Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 26))

  • 590 Accesses

Abstract

One of the key ideas in both robotics and neuroscience (and emphasized in this volume) is that complex behaviour can arise from the interaction of many cooperating simple agents or modules. However, while intelligent behaviour is thought to be obtained from combining modules, it has been common practice to study the development of individual modules or systems in isolation. In this paper we argue that combining modules during learning can help solve the teaching signal dilemma and allow the system to learn without an external teaching signal.

This research was supported by a grant from the Human Frontier Science Program and by a Canadian NSERC 1967 Science and Engineering Scholarship

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, S. (1996). Mutual information maximization: Models of cortical self-organization. Network: Computation in Neural Systems 7 7–31.

    Article  MATH  Google Scholar 

  • Becker, S., & G.E. Hinton (1992). A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355 161–163.

    Article  Google Scholar 

  • Buser, P., & P. Borenstein (1959). Responses somesthesiques, visuel et auditives, recueilles, au niveau du cortex “associatif” infrasylvien chez le chat curarise non anesthesie. Revue d’Electroencéphalographie et de Neurophysiologie Clinique 11 285–304.

    Article  Google Scholar 

  • de Sa, V.R. (1994a). Learning classification with unlabeled data. In J. Cowan, G. Tesauro, & J. Alspector (eds.), Advances in neural information processing systems6 (pp. 112–119). San Francisco, CA: Morgan Kaufman.

    Google Scholar 

  • de Sa, V.R. (1994b). Minimizing disagreement for self-supervised classification. In M. Mozer, P. Smolensky, D. Touretzky, J. Elman, & A. Weigend (eds.), Proceedings of the 1993 Connectionist Models Summer School (pp. 300–307). Hillsdale, NJ: Lawrence Erlbaum Assoc.

    Google Scholar 

  • de Sa, V.R. (1994c). Unsupervised classification learning from cross-modal environmental structure. PhD thesis, Department of Computer Science, University of Rochester, Rochester, NY. Also available as TR 536 (November 1994).

    Google Scholar 

  • de Sa, V.R., & D.H. Ballard (1993). Self-teaching through correlated input. In F.H. Eeckman & J.M. Bower (eds.), Computation and neural systems1992 (pp. 437–441). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • de Sa, V.R., & D.H. Ballard (1998). Category learning through multimodality sensing. Neural Computation 10(5), 1097–1117.

    Article  Google Scholar 

  • Diamantini, C., & A. Spalvieri (1995). Pattern classification by the bayes machine. Journal of Experimental Psychology 34(2), 87–103.

    Google Scholar 

  • Durgin, F.H. (1995). Contingent aftereffects of texture density: Perceptual learning and contingency. PhD thesis, Department of Psychology, University of Virginia.

    Google Scholar 

  • Durgin, F.H., & D.R. Proffitt (1996). Visual learning in the perception of texture: Simple and contingent aftereffects of texture density. Spatial Vision 9(4), 423–474.

    Article  Google Scholar 

  • Fishman, M.C., & C.R. Michael (1973). Integration of auditory information in the cat’s visual cortex. Vision Research 13 1415–1419.

    Article  Google Scholar 

  • Grossberg, S. (1976). Adpative pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biological Cybernetics 23 121–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Haenny, P., J. Maunsell, & P. Schiller (1988). State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Experimental Brain Research 69(2), 245–259.

    Article  Google Scholar 

  • Howells, T. (1944). The experimental development of color-ton synthesia. Journal of Experimental Psychology 34(2), 87–103.

    Article  Google Scholar 

  • Kay, J., D. Floreano, & W. Phillips (1998). Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11(1), 117–140.

    Article  Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics 43 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T. (1990). Improved versions of learning vector quantization. IJCNN International Joint Conference on Neural Networks, volume 1 (pp. I/545–I/550). New York: IEEE Neural Network Council.

    Google Scholar 

  • Kühl, P.K., & A.N. Meltzoff (1984). The intermodal representation of speech in infants. Infant Behavior and Development 7 361–381.

    Article  Google Scholar 

  • Lapedes, A., E. Steeg, & R. Farber (1994). Neural network definitions of highly predictable protein secondary structure classes. In J. Cowan, G. Tesauro, & J. Alspector (eds.), Advances in neural information processing systems6 (pp. 809–816). San Francisco, CA: Morgan Kaufman.

    Google Scholar 

  • MacDonald, J., & H. McGurk (1978). Visual influences on speech perception processes. Perception & Psychophysics 24(3), 253–257.

    Article  Google Scholar 

  • Maunsell, J., G. Sclar, T. Nealey, & D. DePriest (1991). Extraretinal representations in area V4 of macaque monkey. Visual Neuroscience 7(6), 561–573.

    Article  Google Scholar 

  • McGurk, H., & J. MacDonald (1976). Hearing lips and seeing voices. Nature 264 746–748.

    Article  Google Scholar 

  • Meulders, M., J. Colle, & N. Biosacq-Schepens (1965). Macro and microelectrode studies of somatic responses in the lateral geniculate body. Proceedings, XXIII International Congress of Physiological Sciences (p. 364). Tokyo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Sa, V.R. (2000). Combining Uni-Modal Classifiers to Improve Learning. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_74

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics