Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 26))

Abstract

The recognition of objects and, hence, their descriptions must be grounded in the environment in terms of sensor data. We argue why the concepts used to classify perceived objects and used to perform actions on these objects should integrate action-oriented perceptional features and perception-oriented action features. We present a grounded symbolic representation for these concepts. Moreover, the concepts should be learned. We show a logic-oriented approach to learning grounded concepts.

First published in: Rembold et al. (eds.), (1995), Intelligent autonomous systems, IAS-4 (pp. 271–278). Amsterdam: IOS Press.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abelson, R.P. (1963). Computer simulation of personality. New York: John Wiley.

    Google Scholar 

  • Bennett, S.W. (1989). Learning uncertainty tolerant plans through approximation in complex domains. Technical Report UILU-ENG-89–2204, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Brooks, R.A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23.

    Article  Google Scholar 

  • Brooks, R.A. (1991). The role of learning in autonomous robots. In L.G. Valiant & M.K. Warmuth (eds.), COLT’91 Proceedings of the Fourth Annual Workshop (pp. 5–10). Santa Cruz, CA: Morgan Kaufman.

    Google Scholar 

  • Cottrell, G.W., B. Bartell, & C. Haupt (1990). Grounding meaning in perception. In H. Marburger (ed.), Proceedings of the GWAI-90, 14th German Workshop on AI (pp. 307–321). Berlin: Springer.

    Chapter  Google Scholar 

  • De Jong, G.D., & R. Mooney (1986). Explanation-based-learning: An alternative view. Machine Learning 2(1), 145–176.

    Google Scholar 

  • De Jong, G.D., & S. Bennett (1993). Permissive planning — A machine learning approach to linking internal and external worlds. Proceedings of the Eleventh National Conference on Artificial Intelligence (pp. 508–513). Washington, DC.

    Google Scholar 

  • Dillmann, R., J. Kreuziger, & F. Wallner (1993). PRIAMOS — An experimental platform for reflexive navigation. In F.C.A. Groen, S. Hirose, & C.E. Thorpe (eds.), IAS-3: Intelligent Autonomous Systems (pp. 174–183). Amsterdam: IOS Press.

    Google Scholar 

  • Gil, Y. (1994). Learning by experimentation — Incremental refinement of incomplete planning. In W. Cohen & H. Hirsh (eds.), Proceedings of the 11th International Machine Learning Conference (pp. 87–95). Rutgers, NJ: Morgan Kaufman.

    Google Scholar 

  • Giordana, A., & L. Saitta (1990). Abstraction — A general framework for learning. In T. Ellmann, R. Keller, & J. Mostow (eds.), Proceedings AAAI — Workshop on Automatic Generation of Approximations and Abstractions (pp. 245–256). Boston, MA.

    Google Scholar 

  • Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346.

    Article  Google Scholar 

  • Kedar-Cabelli, S. (1988). Toward a computational model of purpose-directed analogy. In A. Prieditis (ed.), Analogica (pp. 89–108). San Mateo, CA: Morgan Kaufman.

    Google Scholar 

  • Kietz, J.-U., & S. Wrobel (1992). Controlling the complexity of learning in logic through syntactic and task-oriented models. In S. Muggleton (ed.), Inductive logic programming. The A.P.I.C. Series (pp. 335–360). New York: Academic Press.

    Google Scholar 

  • Klingspor, V. (1994). GRDT: Enhancing model-based learning for its application in robot navigation. In S. Wrobel (ed.), Proceedings of the Fourth International Workshop on Inductive Logic Programming, GMD-Studien Nr. 237 (pp. 107–122). St. Augustin, Germany.

    Google Scholar 

  • McCarthy, J., & P.J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence 5, 463–502.

    Google Scholar 

  • Millán, J., & C. Torras (1992). A reinforcement connectionist approach to robot path finding in non-maze-like environments. Machine Learning 8, 363–395.

    Google Scholar 

  • Mitchell, T.M. (1982). Generalization as search. Artificial Intelligence 18(2), 203–226.

    Article  MathSciNet  Google Scholar 

  • Muggleton, S. (1992). Inductive logic programming. London: Academic Press.

    MATH  Google Scholar 

  • Nelson, K. (1983). The derivation of concepts and categories from event representations. In E.K. Scholnick (ed.), New trends in conceptual representation: Challenges to Piaget’s theory? (pp. 129–149). Hillsdale, NJ: Lawrence Erlbaum Assoc.

    Google Scholar 

  • Segre, A. (1988). Machine learning of robot assembly plans. Boston, MA: Kluwer.

    Book  Google Scholar 

  • Steels, L. (1993) Building agents out of autonomous behavior systems. In L. Steels & R.A. Brooks (eds.), The ‘artificial life’ route to ‘artificial intelligence’ — Building situated embodied agents (pp. 83–119). Hillsdale, NJ: Lawrence Erlbaum Ass.

    Google Scholar 

  • Wallner, F., M. Kaiser, H. Friedrich, & R. Dillmann (1994). Integration of topological and geometrical planning in a learning mobile robot. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-94). Piscataway, NJ: IEEE.

    Google Scholar 

  • Wrobel, S. (1991). Towards a model of grounded concept formation. Proceedings of the 12th InternationalJoint Conference on AI (pp. 712–719). Los Altos, CA: Morgan Kaufman.

    Google Scholar 

  • Zercher, K. (1992). Wissensintensives Lernen für zeitkritische technische Diagnoseaufgaben. Sankt Augustin, Germany: Infix-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klingspor, V., Morik, K. (2000). Towards Concept Formation Grounded on Perception and Action of a Mobile Robot. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_59

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics