Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 26))

Abstract

A model is developed, by which path integration as observed in many animal species could be implemented neurobiologically. The proposed architecture is able to describe the navigation behaviour of Cataglyphis ants, and that of other social insects, at the level of interacting neurons. The basic idea of this architecture is the concept of activity patterns travelling along neural chains. Although experimental evidence has still to be provided this concept seems biologically plausible and not at all limited to the navigation problem. Neural chains are able to represent variables by activity patterns with high accuracy and temporal stability. Moreover, they are able to integrate incremental signals with high precision. Cyclical chains of neurons show superior performance as soon as cyclical variables are to be represented and integrated. Finally, representation of cyclical variables by travelling activity peaks allows simple approximations of goniometric functions as they are used in path integration systems.

First published in Biological Cybernetics 73, 483–497 (1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benhamou, S., J.P. Sauvé, & P. Bovet (1990). Spatial memory in large-scale movements: Efficiency and limitation of the egocentric coding process. Journal of Theoretical Biology 145, 1–12.

    Article  MathSciNet  Google Scholar 

  • Bisetzky, A.R. (1957). Die Tänze der Bienen nach einem Fussweg zum Futterplatz. Zeitschrift für vergleichende Physiologie 40, 264–288.

    Article  Google Scholar 

  • Collett, T.S., E. Dillmann, A. Giger, & R. Wehner (1992). Visual landmarks and route following in desert ants. Journal of Comparative Physiology A 170, 435–442.

    Google Scholar 

  • Eckmiller, R. (1987). Computational model of the motor program generator for pursuit. Journal of Neuroscience Methods 21, 127–138.

    Article  Google Scholar 

  • French, A.S., & R.B. Stein (1970). A flexible neural analog using integrated circuits. IEEE Transactions on Biomedical Engineering 17, 248–253.

    Article  Google Scholar 

  • Gallistel, C.R. (1990). The organization of learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Görner, P. (1958). Die optische und kinästhetische Orientierung der Trichterspinne Agelena labyrinthica. Zeitschrift für vergleichende Physiologie 41, 111–153.

    Article  Google Scholar 

  • Görner, P., & B. Claas (1985). Homing behaviour and orientation in the tunnel-web spider, Agelena labyrinthica. In F.G. Barth (ed.), Neurobiology of Arachnids (pp. 275–297). Berlin: Springer.

    Chapter  Google Scholar 

  • Gould, J.L. (1986). The locale map of honey bees: Do insects have cognitive maps? Science 232, 861–863.

    Article  Google Scholar 

  • Hartmann, G. (1992). Motion induced transformations of spatial representations: Mapping 3D information onto 2D. Neural Networks 5, 823–834.

    Article  Google Scholar 

  • Jander, R. (1957). Die optische Richtungsorientierung der Roten Waldameise (Formica Rufa). Zeitschrift für vergleichende Physiologie 40, 162–238.

    Article  Google Scholar 

  • Lindauer, M. (1963). Kompassorientierung. Ergebnisse der Biologie 26, 158–181.

    Google Scholar 

  • Michel, B., & R. Wehner (1995). Phase-specific activation of landmark memories during homeward-bound vector navigation in desert ants, Cataglyphis fortis. Proceedings of the Neurobiological Conference 23, 1 (p. 41). Göttingen, Germany.

    Google Scholar 

  • Mittelstaedt, H. (1962). Control systems of orientation in insects. Annual Review of Entomology 7, 177–198.

    Article  Google Scholar 

  • Mittelstaedt, H. (1985). Analytical cybernetics of spider navigation. In F.G. Barth (ed.), Neurobiology of Arachnids (pp. 298–316). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Mittelstaedt, M.L., & H. Mittelstaedt (1973). Mechnismen der Orientierung ohne richtende Aussenreize. Fortschritte der Zoologie 21, 46–58.

    Google Scholar 

  • Mittelstaedt, M.L., & H. Mittelstaedt (1980). Homing by path integration in a mammal. Naturwissenschaften 67, 566.

    Article  Google Scholar 

  • Müller, M. (1989). Mechanismus der Wegintegration bei Cataglyhpis fortis (Hymenoptera, Insecta). Ph.D. Thesis, University of Zurich.

    Google Scholar 

  • Müller, M., & Wehner, R. (1988). Path integration in desert ants, Cataglyhpis fortis. Proceedings of the National Academy of Sciences, USA, 85, 5287–5290.

    Article  Google Scholar 

  • O’Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive map. Hippocampus 1(3): 230–235.

    Article  Google Scholar 

  • Ronacher B., & R. Wehner (1995). Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled. Journal of Comparative Physiology A 173, 103–113.

    Google Scholar 

  • Saint-Paul von, U. (1982). Do geese use path integration for walking home? In F. Papi & H.G. Walraff (eds.), Avian navigation (pp. 298–307). Berlin: Springer.

    Chapter  Google Scholar 

  • Sauvé, J.P. (1989). L’orientation spatiale: Formalisation d’un modèle de mémorisation égocentrée et expérimentation chez l’homme. PhD Thesis, University of Aix-Marseille.

    Google Scholar 

  • Schäfer, M., & R. Wehner (1993). Loading does not affect measurement of walking distance in desert ants, Cataglyhpis fortis. Verhandlungen der Deutschen Zoologischen Gesellschaft 86, 270.

    Google Scholar 

  • Seguinot, V., R. Maurer, & A.S. Etienne (1993). Dead reckoning in a small mammal: The evaluation of distance. Journal of Comparative Physiology A 173, 103–113.

    Google Scholar 

  • Seyfarth, E.A., R. Hergenröder, H. Ebbes, & F.G. Barth (1982). Idiothetic orientation of a wandering spider: Compensation of detours and estimates of goal distance. Behavioural Ecology and Sociobiology 11, 139–148.

    Article  Google Scholar 

  • Touretzki, T. (1994). Neural representation of space using sinusoidal arrays. Neural Computation 5 (6), 1993.

    Google Scholar 

  • Visscher, P.K., & T.D. Seeley (1982). Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63, 1790–1801.

    Article  Google Scholar 

  • Wehner, R. (1981). Spatial vision in arthropods. In H. Autrum (ed.), Handbook of sensory physiology, vol VII/6c (pp. 287–616). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Wehner, R. (1982). Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsblatt der Naturforschenden Gesellschaft Zürich 184, 1–132.

    Google Scholar 

  • Wehner, R. (1987a). Spatial organization of foraging behavior in individually searching desert ants, Cataglyhpis (Sahara Desert) and Ocymyrmex (Namib Desert). In J.M. Pasteels & J.-L. Deneubourg (eds.), From individual to collective behavior in social insects (pp. 15–42). Basel, Boston: Birkhäuser.

    Google Scholar 

  • Wehner, R. (1987b). ‘Matched filters’ — neural models of the external world. Journal of Comparative Physiology A 161, 511–531.

    Article  Google Scholar 

  • Wehner, R. (1992). Arthropods. In F. Papi (ed.), Animal homing (pp. 45–144). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Wehner, R. (1994). The polarization-vision project: Championing organismic biology. In K. Schildberger & N. Eisner (eds.), Neural basis of behavioural adaptation (pp. 103–143). Stuttgart, New York: G. Fischer.

    Google Scholar 

  • Wehner, R., R.D. Harkness, & P. Schmid-Hempel (1983). Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Akademie der Wissenschaften und Literatur Mainz, Mathematisch-Naturwissenschaftliche Klasse. Stuttgart: Fischer.

    Google Scholar 

  • Wehner, R., & M.V. Srinivasan (1981). Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). Journal of Comparative Physiology 142, 315–338.

    Article  Google Scholar 

  • Wehner, R., & R. Menzel (1990). Do insects have cognitive maps? Annual Review of Neuroscience 13, 403–414.

    Article  Google Scholar 

  • Wehner, R., & S. Wehner (1986). Path integration in desert ants. Approaching a longstanding puzzle in insect navigation. Monitore Zoologico Italiano (N.S.) 20, 309–331.

    Google Scholar 

  • Wehner, R., & S. Wehner (1990). Insect navigation: Use of maps or Ariadne’s thread? Ethology, Ecology, and Evolution 2, 27–48.

    Article  Google Scholar 

  • Wittmann, T. (1994). A neurobiologically plausible model of path integration. Proceedings of the 22nd Göttingen Neurobiology Conference 1994 (p. 868).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hartmann, G., Wehner, R. (2000). The Ant’s Path in Integration System: A Neural Architecture. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_55

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics