Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 26))

  • 594 Accesses

Abstract

The visual apprehension of three-dimensional space both in animals and machines uses flat (two-dimensional) images or views as one major source of information. It is often assumed that visually guided behaviour in the 3D world relies on 3D models that are constructed from the images. In this paper, it is argued that such models are not necessary for a number of spatial tasks including obstacle avoidance and maze exploration. An analysis of the minimal amount of information required to perform these tasks shows that view-based processing suffices. The results are related to current models of rotation invariant object recognition that also suggest view-based processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arndt, P.A., H.A. Mallot, & H.H. Bülthoff (1995). Human Stereovision without localized image-features. Biological Cybernetics 72, 279–293.

    Article  MATH  Google Scholar 

  • Braitenberg, V. (1984). Vehicles. Experiments in synthetic psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bülthoff, H.H., & S. Edelman (1992). Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proceedings of the National Academy of Sciences, USA, 89, 60–64.

    Article  Google Scholar 

  • Cartwright, B.A., & T.S. Collett (1982). How honey bees use landmarks to guide their return to a food source. Nature 295, 560–564.

    Article  Google Scholar 

  • Collett, T. (1992). Landmark learning and guidance in insects. Philosophical Transactions of the Royal Society (London) B 337, 295–303.

    Article  Google Scholar 

  • Edelman, S. & D. Weinshall (1991). A self-organizing multiple-view representation of 3D objects. Biological Cybernetics 64, 209–219.

    Article  Google Scholar 

  • Franz, M.O., B. Schölkopf, H.A. Mallot, & H.H. Bülthoff (1998a). Learning view graphs for robot navigation. Autonomous Robots 5, 111–125.

    Article  Google Scholar 

  • Franz, M.O., B. Schölkopf, H.A. Mallot, & H.H. Bülthoff (1998b). Where did I take this snapshot? Scene-based homing by image matching. Biological Cybernetics 79, 191–202.

    Article  MATH  Google Scholar 

  • Gallistel, C.R. (1990). The organization of learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gillner, S., & H.A. Mallot (1998). Navigation and acquisition of spatial knowledge in a virtual maze. To appear in: Journal of Cognitive Neuroscience 10, 445–463.

    Article  Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Kosecka, J., H.I. Christensen, & R. Bajcsy (1995). Discrete event modeling of visually guided behaviors. International journal of Computer Vision 14, 179–191.

    Article  Google Scholar 

  • Kuipers, B.J., & Y.-T. Byun (1991). A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems 8, 47–63.

    Article  Google Scholar 

  • Mallot, H.A. (1997). Behavior-oriented approaches to cognition: Theoretical perspectives. Theory in Biosciences 116, 116–220.

    Google Scholar 

  • Mallot, H.A. (1997). Spatial scale in stereo and shape-from-shading: Image input, mechanisms, and tasks. Perception 26, 1137–1146.

    Article  Google Scholar 

  • Mallot, H.A., H.H. Bülthoff, P. Georg, B. Schölkopf, & K. Yasuhara (1995). View-based cognitive map learning by an autonomous robot. Proceedings of the International Conference on Artificial Neural Networks (ICANN) ′95 and Neuronîmes ′95, volume II (pp. 381–386). Paris: EC2 & Cie.

    Google Scholar 

  • Mallot, H.A., H.H. Bülthoff, J.J. Little, & S. Bohrer (1991). Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetic 64, 177–185.

    Article  MATH  Google Scholar 

  • Mallot, H.A., & S. Gillner (1997). Psychophysical support for a view-based strategy in navigation. Investigative Ophthalmology and Visual Science 38(Suppl.), 4683. ARVO-Abstract No. 4683.

    Google Scholar 

  • Mallot, H.A., & N.K. Logothetis (1998). Mechanisms of cognition (introductory remarks). In N. Eisner & R. Wehner (eds.), New neuroethology on the move, volume 1 (pp. 278–283). 26th Göttingen Neurobiology Conference. Stuttgart, Germany: Thieme Verlag.

    Google Scholar 

  • Mallot, H.A., E. Schulze, & K. Storjohann (1989). Neural network strategies for robot navigation. In L. Personnaz & G. Dreyfus (eds.), Neural networks from models to applications (pp. 560–569). Paris: I.D.S.E.T.

    Google Scholar 

  • Marr, D. (1982). Vision. San Francisco, CA: W.H. Freeman.

    Google Scholar 

  • Martinetz, T.M., & K. Schulten (1994). Topology representing networks. Neural Networks 7, 507–522.

    Article  Google Scholar 

  • Mayhew, J.E.W., Y. Zheng, & S. Cornell (1992). The adative control of a four-degrees-of-freedom stereo camera head. Proceedings of the Royal Society London B 337, 315–326.

    Article  Google Scholar 

  • McNaughton, B.L., C.A. Barnes, & J. O’Keefe (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely moving rats. Experimental Brain Research 52, 41–49.

    Article  Google Scholar 

  • O’Keefe, J., & L. Nadel (1978). The hippocampus as a cognitive map. Oxford, England: Clarendon.

    Google Scholar 

  • Schölkopf, B., & H.A. Mallot (1995). View-based cognitive mapping and path planning. Adaptive Behavior 3, 311–348.

    Article  Google Scholar 

  • von Seelen, W., S. Bohrer, J. Kopecz, & W.M. Theimer (1995). A neural architecture for visual information processing. Internationaljournal of Computer Vision 16, 229–260.

    Article  Google Scholar 

  • Trullier, O., S.I. Wiener, A. Berthoz, & J.-A. Meyer (1997). Biologically based artificial navigation systems: Review and prospects. Progress in Neurobiology 51, 483–544.

    Article  Google Scholar 

  • Wagner, K. (1970). Graphentheorie. Mannheim, Wien, Zürich: Bibliographisches Institut.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mallot, H.A. (2000). View-Based Navigation: Obstacle Avoidance and Maze Exploration. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_54

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics