Skip to main content

Abstract

Neural networks which initiate and control the behavior of animals embody several features. One concerns the role of sensory input. At one extreme are networks which mediate actions that are direct responses to sensory input, i.e., reactive or sensory driven actions. At the other are networks which themselves generate the basic activation or movement parameters for the behavior, i.e., activity controlled by central pattern generators. Biological control systems which must produce suitable actions in unpredictable environments, however, usually contain elements of both kinds. A second feature concerns the structure of the control network. In most complex biological networks, control functions, whether sensory-driven or centrally-driven, are dispersed among several subsystems which interact more or less strongly. Both aspects are especially true for walking. Although walking is sometimes regarded as quite a simple behavior, it involves a very strong and complex interaction with the physical environment. Typical control systems involve central pattern generators as well as simple reflexes and more complex sensory-driven modulations of central activity (Cruse et al. 1990). The combination makes the walking system independent of particular stimulus inputs but at the same time enables the walking system to adapt to changes in the environment. The flexible control appears to arise from the cooperation of several control centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bässler, U. (1976). Reversal of a reflex to a single motoneuron in the stick insect Carausius morosus. Biological Cybernetics 24, 47–49.

    Article  Google Scholar 

  • Bässler, U. (1977). Sensory control of leg movement in the stick insect Carausius morosus. Biological Cybernetics 25, 61–72.

    Article  Google Scholar 

  • Bässler, U. (1983). Neural basis of elementary behavior in stick insects. Berlin, Heidelberg, New York: Springer.

    Book  Google Scholar 

  • Bässler, U. (1986). On the definition of central pattern generator and its sensory control. Biological Cybernetics 54, 65–69.

    Article  Google Scholar 

  • Bässler, U. (1993). The femur-tibia control system of stick insects — A model system for the study of the neural basis of joint control. Brain Research Reviews 18, 207–226.

    Article  Google Scholar 

  • Bässler, U., & U. Wegner (1983). Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus. Journal of Experimental Biology, 105 127–145.

    Google Scholar 

  • Beer, R.D., H.J. Chiel, R.D. Quinn, & P. Larson (1992). A distributed neural network architecture for hexapod robot locomotion. Neural Computation 4, 356– 365.

    Article  Google Scholar 

  • Beer, R.D., R.D. Quinn, H.J. Chiel, & R.E. Ritzmann (1997). Biologically inspired approaches to robotics. Communications of the ACM 40, 31–38.

    Article  Google Scholar 

  • Brooks, R.A. (1989): A robot that walks: Emergent behavior from a carefully evolved network. Neural Computation 1, 253–262.

    Article  Google Scholar 

  • Brooks, R.A. (1991). Intelligence without reason. Proceedings of the International Joint Conference on Artificial Intelligence (1991) (pp. 569–595). Sydney, Australia.

    Google Scholar 

  • Brown, T.G. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society 84B, 308–319.

    Article  Google Scholar 

  • Büschges, A., J. Schmitz, & U. Bässler (1995). Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. Journal of exprimental Biology 198, 435–456

    Google Scholar 

  • Camhi, J.M. (1984). Neuroethology. Sunderland, MA: Sinauer Ass. Inc.

    Google Scholar 

  • Cruse, H. (1976a). On the function of the legs in the free walking stick insect Carausius morosus. Journal of Comparative Physiology 112, 235–262.

    Article  Google Scholar 

  • Cruse, H. (1976b) The control of the body position in the stick insect (Carausius morosus), when walking over uneven surfaces. Biological Cybernetics 24, 25–33.

    Article  Google Scholar 

  • Cruse, H. (1979). The control of the anterior extreme position of the hindleg of a walking insect. Physiological Entomology 4, 121–124.

    Article  Google Scholar 

  • Cruse, H. (1983). The influence of load and leg amputation upon coordination in walking crustaceans: A model calculation. Biological Cybernetics 49, 119–125.

    Article  Google Scholar 

  • Cruse, H. (1985a). Which parameters control the leg movement of a walking insect? II. The start of the swing phase. Journal of Experimental Biology 116, 357–362.

    Google Scholar 

  • Cruse, H. (1985b). Coactivating influences between neighbouring legs in walking insects. Journal of Experimental Biology 114, 513–519.

    Google Scholar 

  • Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, 15–21.

    Article  Google Scholar 

  • Cruse, H., & Ch. Bartling (1995). Movement of joint angles in the legs of a walking insect, Carausius morosus. Journal of Insect Physiology 41, 761–771.

    Article  Google Scholar 

  • Cruse, H., Ch. Bartling, D.E. Brunn, J. Dean, M. Dreifert, T. Kindermann, & J. Schmitz (1995). Walking: a complex behavior controlled by simple systems. Adaptive Behavior 3, 385–418.

    Article  Google Scholar 

  • Cruse, H., J. Dean, H. Heuer, & R.A. Schmidt (1990). Utilization of sensory information for motor control. In O. Neumann & W. Prinz (eds.), Relationship between action and perception (pp. 43–79). Berlin: Springer.

    Chapter  Google Scholar 

  • Cruse, H., U. Müller-Wilm, & J. Dean (1993). Artificial neural nets for a 6-legged walking system. In J.A. Meyer, H.L. Roitblat, & S.W. Wilson (eds.), From animals to animats 2. Journal of Experimental Biology (pp. 52–60). Cambridge, MA: MIT Press.

    Google Scholar 

  • Cruse, H., & G.M. Silva Saavedra (1996). Curve walking in crayfish. Journal of Experimental Biology 199, 1477–1482

    Google Scholar 

  • Dean, J. (1990). Coding proprioceptive information to control movement to a target: Simulation with a simple neural network. Biological Cybernetics 63, 115–120.

    Article  Google Scholar 

  • Dean, J. (1991a). Effect of load on leg movement and step coordination of the stick insect Carausius morosus. Journal of Experimental Biology 159, 449–471.

    Google Scholar 

  • Dean, J. (1991b). A model of leg coordination in the stick insect, Carausius morosus. I. A geometrical consideration of contralateral and ipsilateral coordination mechanisms between two adjacent legs. Biological Cybernetics 64, 393–402.

    Article  Google Scholar 

  • Dean, J. (1991c). A model of leg coordination in the stick insect, Carausius morosus. II. Description of the kinematic model and simulation of normal step pattern. Biological Cybernetics 64, 403–411.

    Article  Google Scholar 

  • Dean, J. (1992a). A model of leg coordination in the stick insect, Carausius morosus. III. Responses to perturbations of normal coordination. Biological Cybernetics 66, 335–343.

    Article  Google Scholar 

  • Dean, J. (1992b). A model of leg coordination in the stick insect, Carausius morosus. IV. Comparison of different forms of coordinating mechanisms. Biological Cybernetics 66, 345–355.

    Article  Google Scholar 

  • Dean, J., & G. Wendler (1982). Stick insects walking on a wheel: Perturbations induced by obstruction of leg protraction. Journal of Comparative Physiology 148, 195–207.

    Article  Google Scholar 

  • Delcomyn, F. (1981). Insect locomotion on land. In CF. Herreid & CR. Fourt-ner (eds.), Locomotion and energetics in arthropods (pp. 103–125) New York: Plenum.

    Chapter  Google Scholar 

  • Delcomyn, F. (1985). Factors regulating insect walking. Annual Review of Entomology 30, 239–256.

    Article  Google Scholar 

  • Espenschied, K.S., R.D. Quinn, H.J. Chiel, & R.D. Beer (1993). Leg coordination mechanisms in the stick insect applied to hexapod robot locomotion. Adaptive Behavior 1, 455–468.

    Article  Google Scholar 

  • Espenschied, K.S., R.D. Quinn, H.J. Chiel, & R.D. Beer (1994). Biologically-inspired hexapod robot control. Proceedings of the 5th International Symposium on Robotics and Manufacturing (ISRAM) (pp. 15–17). Maui Inter-Continental Resort-Wailea, Maui, Hawaii, August 6, 15–17.

    Google Scholar 

  • Espenschied, K.S., R.D. Quinn, H.J. Chiel, & R.D. Beer (1996). Biologically-based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems 18, 59–64.

    Article  Google Scholar 

  • Ferrell, C. (1993). Robust agent control of an autonomous robot with many sensors and actuators. MS thesis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Getting, P.A., & M.S. Dekin (1985). Tritonia swimming: A model system for integration within rhythmic motor systems. In A.I. Seiverston (ed.), Model neural networks and behavior (pp. 3–20). New York, London: Plenum Press.

    Chapter  Google Scholar 

  • Graham, D. (1972). A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect. Journal of Comparative Physiology 81, 23–52.

    Article  Google Scholar 

  • Graham, D. (1979). Effects of circum-oesophageal lesion on the behaviour of the stick insect Carausius. II. Changes in walking-coordination. Biological Cybernetics 32, 147–152

    Article  MATH  Google Scholar 

  • Grillner, S., P. Wallén, L. Brodin, & A. Lansner (1991). Neural network generating locomotor behavior in lamprey: Circuitry transmitters membrane properties and simulation. Annual Review of Neuroscience 14, 169–199.

    Article  Google Scholar 

  • Grillner, S., T. Deliagina, ö. Ekeberg, A. El Manira, R.H. Hill, A. Lansner, G.N. Orlovsky, & P. Wallen (1995). Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends in Neurosciences 18, 270–279.

    Google Scholar 

  • Houk, J.C., J. Keifer, & A.G. Barto (1993). Distributed motor commands in the limb premotor network. Trends in Neurosciences 16, 27–33.

    Article  Google Scholar 

  • Kittmann, R., J. Schmitz, & A. Büschges (1996). Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Journal of Neurobiology 31, 512–532.

    Article  Google Scholar 

  • Kristan, W.B., Jr., S.R. Lockery, G. Wittenberg, & D. Brody (1992). Making behavioral choices with interneurons in a distributed system. In J. Kien, C.R. Mc-Crohan, & W. Winlow (eds.), Neurobiology of motor programme selection (pp. 170–200). New York: Pergamon Press.

    Chapter  Google Scholar 

  • Land, M.F. (1972). Stepping movements made by jumping spider during turns mediated by lateral eyes. Journal of Experimental Biology 57, 15–40.

    Google Scholar 

  • Minsky, M. (1985). The society of mind. New York: Simon and Schuster.

    Google Scholar 

  • Müller-Wilm, U., J. Dean, H. Cruse, H.J. Weidemann, J. Eltze, & F. Pfeiffer (1992). Kinematic model of a stick insect as an example of a 6-legged walking system. Adaptive Behavior 1, 33–46.

    Article  Google Scholar 

  • Pearson, K.G. (1972). Central programming and reflex control of walking in the cockroach. Journal for Experimental Biology 56, 173–193.

    Google Scholar 

  • Pearson, K.G. (1981). Function of sensory input in insect motor systems. Canadian Journal of Physiological Pharmacology 59, 660–666.

    Article  Google Scholar 

  • Pearson, K.G. (1995). Proprioceptive regulation of locomotion. Current Opinions in Neurobiology 5, 786–791.

    Article  Google Scholar 

  • Pfeiffer, F., J. Eltze, & H.J. Weidemann (1994). The TUM walking machine. In M. Jamashidi, J. Yuh, Ch. Nguyen, & R. Lumia (eds.), Proceedings of the5th International Symposium on Robotics and Manufacturing 2 (pp. 167–174). New York: ASME Press.

    Google Scholar 

  • Schmitz, J. (1993). Load-compensation reactions in the proximal leg joints of stick insects during standing and walking. Journal of Experimental Biology 183, 15–33.

    Google Scholar 

  • Schmitz, J., & A. Büschges (1993). Pilocarpine induced rhythmicity in the thoracic nerve cord of the stick insect. In N. Eisner & M. Heisenberg (eds.), Proceedings of the 21th Göttingen Neurobiology Conference (p. 208). Stuttgart: Thieme.

    Google Scholar 

  • Schmitz, J., Ch. Bartling, D.E. Brunn, H. Cruse, J. Dean, H. Kindermann, M. Schumm, & H. Wagner (1995). Adaptive properties of “hard-wired” neuronal systems. Verhandlungen der Deutschen Zoologischen Gesellschaft 88.2, 165 – 179.

    Google Scholar 

  • Schmitz, J., S. Ernst, & J. Reich (1996). A new intersegmental coordinating influence in the walking system of the stick insect. In N. Eisner & H.-U. Schnitzler (eds.), Brain and Evolution. Proceedings of the 24th Goettingen Neurobiology Conference (p. 129). Stuttgart: Thieme Verlag.

    Google Scholar 

  • Schmitz, J., & G. Haßfeld (1989). The treading-on-tarsus reflex in stick insects: Phase-dependence and modifications of the motor output during walking. Journal of Experimental Biology 143, 373–388.

    Google Scholar 

  • Wendler, G. (1964). Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Zeitschrift für vergleichende Physiology 48, 198–250.

    Article  Google Scholar 

  • Wendler, G. (1968). Ein Analogmodell der Beinbewegungen eines laufenden Insekts. Kybernetik 1968, Beihefte zu “elektronischen Anlagen” 18, 68–74 (München: Oldenbourg).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cruse, H. et al. (2000). A Modular Artificial Neural Net for Controlling a Six-Legged Walking System. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics