Skip to main content

Molecular Dynamics Simulation of Ion Channels

  • Conference paper
New Horizons of Computational Science

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 263))

  • 184 Accesses

Abstract

Although the biological function of ion channels associated with cells has been clarified, an atomic level understanding of these transmembrane proteins is still lacking. Molecular Dynamics (MD) simulations are a well suited tool to gain insight into the function of such proteins in their host environment. First, we give a brief introduction to the field of ion channels by describing the basic properties, structure, and function of an ion channel. We then present specific results for three a-helical bundles: the synthetic LS2 and LS3 channels, and a shortened sequence of the M2 channel protein associated with the influenza virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerfeldt, K.S., J.D. Lear, Z.R. Wasserman, L.A. Chung, and W.F. DeGrado. Synthetic peptides as models for ion channel proteins.Acc. Chem. Res. 26:191–197 (1993)

    Article  CAS  Google Scholar 

  2. Barry, P.H. and P.W. Gage. Ion Selectivity of Channels at the End Plate. Curr.Topics Membrane Transport 21:1 (1984)

    Article  CAS  Google Scholar 

  3. Beachy, M.D., D. Chasman, R.B. Murphy, T.A. Halgren, and R.A. Friesner. Accurateab initioquantum chemical determination of the relative energies of peptide conformations and assessment of empirical force fields.J. Am. Chem. Soc. 119:5908–5920 (1997)

    Article  CAS  Google Scholar 

  4. Biggin, P.C. and M.S.P. Sansom. Simulation of voltage-dependent interactions of a-helical peptides with lipid bilayers.Biophys. Chem. 60:99–110 (1996)

    Article  PubMed  CAS  Google Scholar 

  5. Breed, J., H.S.S.R. Sankararamakrishnan, I.D. Kerr, and M.S.P. Sansom. Molecular dynamics simulations of water within models of ion channels. Biophys. J. 70:1643-1661 (1996)

    Google Scholar 

  6. Bucossi, G., E. Eismann, F. Sesti, M. Nizzari, M. Seri, U.K. Kaupp, and V. Torre. Time-dependent current decline in cyclic GMP-gated bovine channels caused by point mutations in the pore region expressed inxenopusoocytes.J. of Physiology.493:409–418 (1996)

    CAS  Google Scholar 

  7. Chizmakov, I.V., F.M. Geraghty, D.C. Odgen, A. Hayhurst, M. Antoniou, and A.J. Hay. Selective proton permeability and pH regulation of influenza virus M2 channel expressed in mouse erythroleukaemia cells. Journalof Physiology494.2:329–336 (1996)

    Google Scholar 

  8. Chung, A.A., J.D. Lear, and W.F. DeGrado. Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles.Biochemistry.31:6608–6616 (1992)

    Article  PubMed  CAS  Google Scholar 

  9. Duff, K.C. and R.H. Ashley. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayer.J. Virol 190, 485 (1992)

    Article  CAS  Google Scholar 

  10. Ewart, G.D., T. Sutherland, P.W. Gage, and G.B. Cox. The Vpu Protein of Human Immunodeficiency Vitus Type 1 Froms Cation-Selective Ion Channels.J. Virol70:7108 (1996)

    PubMed  CAS  Google Scholar 

  11. Favre, I., E. Moczydlowski, and L. Schild. On the structure basis for Ionic selectivity amongNa+ K+and Ca2+ in the voltage-gated sodium channel.Biophys. J. 71:3110–3125 (1996)

    Article  PubMed  CAS  Google Scholar 

  12. Hille, B. Ionic Channels of Excitable Membranes. Sinauer Associates Inc. (1992)

    Google Scholar 

  13. Hladky, S.B. and D.A. Haydon. Ion transfer across lipid membranes in the presence of gramicidin A.Biochim. Biophys. Acta.274:294–312 (1972)

    Article  PubMed  CAS  Google Scholar 

  14. Johansson, J.S., F. Rabanal, and P. L. Dutton. Binding of the volatile anesthetic halothane to the hydrophobic core of tetra-a-helix-bundle protein. Journalof PharmacologyandExperimental Therapeutics279:56–61 (1996)

    CAS  Google Scholar 

  15. Kienker, P.K., W.F. DeGrado, and J.D. Lear. A helical-dipole model describes the single-channel current rectification of a uncharged peptide ion channel.Proc. Natl. Acad. Sci. USA.91:4859–4863 (1994)

    Article  PubMed  CAS  Google Scholar 

  16. Kienker P. and J.D. Lear. Charge selectivity of the designed uncharged peptide ion channelAc-(LSSLLSL) 3 -CONH 2 . Biophys. J .68:1347–1358 (1995)

    Article  PubMed  CAS  Google Scholar 

  17. Lamb, R.A., S.L. Zebedee, and C.D. Richardson. Influenza virus M2 protein is an integral membrane protein expressed on the infected cell surface.Cell40:627–633 (1985)

    Article  PubMed  CAS  Google Scholar 

  18. Lear, J.D., Z.R. Wasserman, and W.F. DeGrado. Synthetic amphiphilic peptide models for protein ion channels.Science.240:1177–1181 (1988)

    Article  PubMed  CAS  Google Scholar 

  19. McCammon, J.A., B.R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature. 267:585–590 (1977)

    Article  PubMed  CAS  Google Scholar 

  20. Murphy, R.B., W.T. Pollard, and R.A. Friesner. Pseudospectral localized generalized Moller-Plesset methods with a generalized valence bond reference wave function: theory and calculation of conformational energies.J. Chem. Phys.106: 5073–5084 (1997)

    Article  CAS  Google Scholar 

  21. Roux, B. and M. Karplus. Molecular dynamics simulations of the gramicidin channel. Anna.Rev. Bipys. Biomol. Struct.23:731–761 (1994)

    Article  CAS  Google Scholar 

  22. Sansom, M.S.P., H.S.S.R. Sankararamakrishnan, I.D. Kerr, and J. Breed.Seven-helix bundles: Molecular modeling via restrained molecular dynamics.BiophysicalJournal. 68:1295–1310 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. Sansom, M.S.P., I.D. Kerr, G.R. Smith, and H.S. Son. The influenza-A virus M2 channel ¡ª A molecular modeling and simulation study. Virol. 223:163–173 (1997)

    Google Scholar 

  24. Sesti, F., E. Eismann, U.B. Kaupp, M. Nizzari, and V. Torre. The multi-ion nature of the cGMP-gated channel from vertebrate rods.J. of Physiology487:17–36 (1995)

    CAS  Google Scholar 

  25. Sesti, F., M. Nizzari, and V. Torre. Effect of changing temperature on the ionic permeation through the cyclic GMP-gated channel from vertebrate photoreceptors.Biophys. J.70:2616–2639 (1996)

    Article  PubMed  CAS  Google Scholar 

  26. Tuckerman, M., B.J. Berne, and G.J. Martyna. Reversible multiple time scale molecular dynamics.J. Chem. Phys.97:1990–2001 (1992)

    Article  CAS  Google Scholar 

  27. Unwin, N. Nicotinic acetylcholine receptor at 9 Aresolution.J. Mol. Biol.299:1101–1124 (1993)

    Article  Google Scholar 

  28. Wang, C., K. Takeuchi, L.H. Pinto, and R.A. Lamb. Ion channel activity of influenza A virus M2 protein: Characterization of the amantadine block.J. Virol.67, 5585 (1993)

    PubMed  CAS  Google Scholar 

  29. Woolf, T.B. and B. Roux. Molecular dynamics simulations of proteins in lipid membranes the first steps. Biophys. J. A354 (1993)

    Google Scholar 

  30. Woolf, T.B. and B. Roux. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer.Proc. Natl. Acad. Sci. USA.91:11631–11635 (1994)

    Article  PubMed  CAS  Google Scholar 

  31. Zhong, Q.F., Q. Jiang, P.B. Moore, D.M. Newns, and M.L. Klein. Molecular dynamics simulation of a synthetic ion channel.Biophys. J.in press. (1997)

    Google Scholar 

  32. Zhong, Q.F., D.M. Newns, and M.L. Klein. Energy analysis of the LS2 synthetic ion channel. unpublished.

    Google Scholar 

  33. Zhong, Q.F., D.M. Newns, and M.L. Klein. Formation and stability of the synthetic ion channel. in preparation.

    Google Scholar 

  34. Hussleinm, T., Q.F. Zhong, P.B. Moore, D.M. Newns, P.C. Pattnaik, and M.L. Klein. Molecular dynamics simulations of the M2 ion channel. in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zhong, Q., Husslein, T., Klein, M.L. (2001). Molecular Dynamics Simulation of Ion Channels. In: Ebisuzaki, T., Makino, J. (eds) New Horizons of Computational Science. Astrophysics and Space Science Library, vol 263. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0864-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0864-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3848-5

  • Online ISBN: 978-94-010-0864-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics