Advertisement

Double Covers of Pseudo-orthogonal Groups

  • Andrzej Trautman
Part of the NATO Science Series book series (NAII, volume 25)

Abstract

For every pair (m, n) of non-negative integers one defines E m,n to be the group of equivalence classes of central extensions of the pseudo-orthogonal group O m,n by ℤ2. The isomorphism k : E m,n → H2(BO m,n 2) is used to show that E m,n is isomorphic to the group ℤ 2 l(m,n) where l(0,0) = 0, l(l,0) = 1, l(m,0) = 2, l(1.1) = 3, l(1,n) = 4 and l(m,n) = 5 for m,n > 1. If M is a manifold with a metric tensor g of signature (m, n) and f is a smooth map from M to the classifying space BO m,n inducing the principal O m,n -bundle P of orthonormal frames defined by g, then the bundle P can be reduced to an element H of E m,n —i.e. to a double cover of O m,n —if, and only if, the element f*k(H) of H2(M, ℤ2) vanishes. This generalizes the classical topological condition for the existence of a pin structure on a pseudo-Riemannian manifold. The set of all 32 = 25 inequivalent double covers of O m × O n , the maximal compact subgroup of O m,n , m,n > 1, is described explicitly.

Keywords

Pin and spin groups extensions of pseudo-orthogonal groups by ℤ2generalized pin structures topological obstructions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atiyah, M. F., R. Bott, and A. Shapiro: 1964, ‘Clifford modules’. Topology 3, Suppl. 1, 3–38.MathSciNetCrossRefMATHGoogle Scholar
  2. Borel, A. and F. Hirzebruch: 1959, ‘Characteristic classes and homogeneous spaces, II’. Amer. J. Math. 81, 315–382.MathSciNetCrossRefGoogle Scholar
  3. Bourbaki, N.: 1970, Éléments de Mathématiques: Algèbre, Ch. 1 à 3. Paris: Diffusion C.C.L.S.Google Scholar
  4. Carlip, S. and C. DeWitt-Morette: 1988, ‘Where the sign of the metric makes a difference’. Phys. Rev. Lett. 60, 1599–1601.MathSciNetCrossRefGoogle Scholar
  5. Chamblin, A.: 1994, ‘On the obstructions to non-Cliffordian pin structures’. Comm. Math. Phys. 164, 65–85.MathSciNetCrossRefMATHGoogle Scholar
  6. Dabrowski, L.: 1988, Group Actions on Spinors. Napoli: Bibliopolis.MATHGoogle Scholar
  7. DeWitt-Morette, C.and B. S. DeWitt: 1990, ‘Pin groups in physics’. Phys. Rev. D 41, 1901–07.MathSciNetCrossRefGoogle Scholar
  8. Eilenberg, S. and S. MacLane: 1942, ‘Group extensions and homology’. Ann. Math. 43, 757–831.MathSciNetCrossRefMATHGoogle Scholar
  9. Fierz, M. and V. F. Weisskopf: 1960, Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli. New York: Interscience.Google Scholar
  10. Haefliger, A.: 1956, ’sur l’extension du groupe structural d'un espace fibrè’. C. R. Acad. Sci. (Paris) 243, 558–560.MathSciNetMATHGoogle Scholar
  11. Husemoller, D.: 1966, Fibre Bundles. New York: McGraw-Hill.MATHGoogle Scholar
  12. Jackowski, S.: 2000, private communication.Google Scholar
  13. Karoubi, M.: 1968, ‘Algèbres de Clifford et if-théorie’. Ann. Sci. Éc. Norm. Sup., 4ème sér. 1, 161–270.MathSciNetMATHGoogle Scholar
  14. MacLane, S.: 1963, Homology. Berlin: Springer.CrossRefMATHGoogle Scholar
  15. Milnor, J.: 1963, ’spin structures on manifolds’. Enseign. Math. 9, 198–203.MathSciNetMATHGoogle Scholar
  16. Milnor, J.: 1983, ‘On the homology of Lie groups made discrete’. Comment. Math. Helv. 58, 72–85. MR 85b:57050 by E. Friedlander.MathSciNetCrossRefMATHGoogle Scholar
  17. Milnor, J. W. and J. D. Stasheff: 1974, Characteristic Classes. Princeton: Princeton University Press.MATHGoogle Scholar
  18. Robinson, I. and A. Trautman: 1993, ‘The conformai geometry of complex quadrics and the fractional-linear form of Möbius transformations’. J. Math. Phys. 34, 5391–5406.MathSciNetCrossRefMATHGoogle Scholar
  19. Schrödinger, E.: 1932, ‘Diracsches Elektron im Schwerefeld Ii’. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. XI, 105–28.Google Scholar
  20. Shirokov, Y. M.: 1960, ’space and time reflections in relativistic theory’. Nuclear Physics 15, 1–12.MathSciNetCrossRefMATHGoogle Scholar
  21. Spanier, E. H.: 1966, Algebraic Topology. New York: McGraw-Hill.MATHGoogle Scholar
  22. Ward, R. S. and R. O. Wells, Jr.: 1990, Twistor Geometry and Field Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Andrzej Trautman
    • 1
  1. 1.Instytut Fizyki TeoretycznejUniwersytet WarszawskiWarszawaPoland

Personalised recommendations