Skip to main content

Covalent Cluster-Assembled Carbon Solids

  • Conference paper
Nanostructured Carbon for Advanced Applications

Part of the book series: NATO Science Series ((NAII,volume 24))

Abstract

The discovery of fullerenes and carbon nanotubes has disclosed a new wide area of research in fundamental condensed matter physics as well as in chemistry and materials science and engineering, confirming carbon as the most versatile element of nature. Moreover carbon clusters can be considered as the building blocks for a large variety of carbon and carbon-based cluster-assembled materials. Quite often clusters have peculiar properties, originating from the low dimensionality, which are frustrated in the corresponding three-dimensional solid. The concept behind cluster assembling is that some of the interesting properties and functions which occur in the composing clusters may be preserved in a three-dimensional robust structure. Fullerenes and nanotubes, like graphite layers, can pack into a three-dimensional crystal through van der Waals forces, unless stronger ionic forces are switched on by the addition of metal atoms (e.g., K 3 C 60) or covalent bonds induce extended polymerization. Recently covalent crystals made of small fullerene clusters has been synthesized [1] with the promise of important properties and applications, such as high-T c superconductivity, which are rather unusual for ordinary carbon. In view of this wonderful structural versatility of carbon, a basic question is whether carbon is able to form other fully covalent, fully three-dimensional sp3 solids, besides diamond and lonsdaleite, and whether a fully covalent, fully three-dimensional sp2 solid can exist. A large amount of predictive theoretical work and speculations has been produced in the last decade about the possibility of new carbon solids obtained from the coalescence of fullerenes and other carbon clusters, such as, for example, clathrates and schwarzites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Z. Iqbal, Y. Zhang, H. Grebel, A. Lahamer, G. Benedek, M. Bernasconi, J. Cariboni, R. Sharma, F. J. Owens, M. E. Kozlov, K. V. Rao, and M. Muhammed, submitted.

    Google Scholar 

  2. A. F. Wells, The Third Dimension in Chemistry Clarendon Press, Oxford 1956, Structural Inorganic Chemistry Clarendon Press, Oxford 1975.

    Google Scholar 

  3. A. F. Wells, Three-Dimensional Nets and Polyhedra Wiley, New York 1977.

    Google Scholar 

  4. R. Williams, The Geometrical Foundation of Natural Structure Dover, New York 1979.

    MATH  Google Scholar 

  5. P.S. Aleksandrov, Kombinatornaja Topologija OGIZ, Moscow 1947.

    Google Scholar 

  6. M. O’Keeffe, Foams and Emulsions edited by J.-F. Sadoc and N. Rivier — Kluwer, Dordrecht 1998.

    Google Scholar 

  7. M. O’Keeffe and B. G. Hyde, Crystal Structures I: Patterns and Symmetry Min. Soc. America, Washington, DC 1996.

    Google Scholar 

  8. A. Ceulemans and P.W. Fowler, Nature 353, 52 (1991).

    Article  ADS  Google Scholar 

  9. P. W. Fowler, A. Rassat and A. Ceulemans, J. Chem. Soc.-Faraday Trans. 92, 4877 (1996).

    Article  Google Scholar 

  10. A. Ceulemans, M. Szopa, and P. W. Fowler, Europhys. Lett. 36, 645–649 (1996).

    Article  ADS  Google Scholar 

  11. A. Ceulemans, L. F. Chibotaru, P. W. Fowler and M. Szopa, J. Chem. Phys. 110, 6916 (1999).

    Article  ADS  Google Scholar 

  12. M. O’Keeffe, G. B. Adams and O. F. Sankey, Phil. Mag. Lett. 78, 21 (1998).

    Article  ADS  Google Scholar 

  13. F. C. Frank and J. S. Kaspers, Acta Cryst. 11, 184 (1958); 12, 254 (1959).

    Article  Google Scholar 

  14. W.F. Claussen, J. Chem. Phys. 19, 259 (1951); J. Chem Phys. 19, 1425 (1951).

    Article  ADS  Google Scholar 

  15. D. Feil and G.A. Jeffry, J. Chem. Phys. 35, 1863 (1961).

    Article  ADS  Google Scholar 

  16. M. Meier and D.H. Olson, Atlas of Zeolite Structure Types, Butterworths, London, 1987.

    Google Scholar 

  17. R. Nesper, K. Vogel, P.E. Blöchl, Angew. Chem. (Int. Ed. Engl.) 32, 701 (1993).

    Article  Google Scholar 

  18. G.B. Adams, M. O’Keeffe, A. A. Demkov, O. F. Sankey and Y. Huang, Phys. Rev. B 49, 8048 (1994).

    Article  ADS  Google Scholar 

  19. G. Benedek, L. Colombo, S. Gaito and S. Serra, Proc. Int. School of Physics ‘Enrico Fermi’, 135th Course, A. Paoletti and A. Tucciarone, Eds. (IOS Press, Amsterdam 1997) p. 575.

    Google Scholar 

  20. G. Benedek, E. Galvani and S. Sanguinetti, Chem. Phys. Letters 244, 339 (1995).

    Article  ADS  Google Scholar 

  21. G. Benedek and L. Colombo, in Cluster Assembled Materials, edited by K. Sattler (trans. Tech. Publ. Winthertur, 1997), p. 1.

    Google Scholar 

  22. M. Bernasconi, S. Gaito and G. Benedek, Phys. Rev. B 61, 12689 (2000).

    ADS  Google Scholar 

  23. R. E. Clausing et ai., Editors, Diamond and Diamondlike Films and Coatings (Plenum, New York, 1991).

    Google Scholar 

  24. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  25. We used the code CPMD, developed by J. Hutter et al., Max-Planck-Institut für Festkörperforschung and IBM Research Laboratory (1990-99).

    Google Scholar 

  26. G. S. Nolas et al., Appl. Phys. Lett. 73, 178 (1998); J. L. Cohn et al., Phys. Rev. Lett. 82, 779 (1999).

    Article  ADS  Google Scholar 

  27. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).

    Article  ADS  Google Scholar 

  28. S. Saito and A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991).

    Article  ADS  Google Scholar 

  29. N. A. Marks, D. R. McKenzie, B. A. Pailthorpe, M. Bernasconi and M. Parrinello, Phys. Rev. Lett. 76, 2934 (1996).

    Article  Google Scholar 

  30. P. C. Eklund, A. M. Rao, Fullerene Polymers and Fullerene Polymer Composites, Eds. Springer-Verlag, Berlin (2000).

    Google Scholar 

  31. O. Delgado Friedrichs et al. Nature 400, 644 (1999).

    Article  ADS  Google Scholar 

  32. M. Coté, J. C. Grossman, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 81, 697 (1998).

    Article  ADS  Google Scholar 

  33. M. Menon and E. Richter, Phys. Rev. B 60, 13322 (1999).

    ADS  Google Scholar 

  34. M. Menon E. Richter, and L. Chernozatonskii, Phys. Rev. B 62, 15420 (2000).

    ADS  Google Scholar 

  35. C. Piskoti, J. Yarger, and A. Zettl, Nature 393, 711 (1998).

    Article  Google Scholar 

  36. Z. Iqbal, this volume.

    Google Scholar 

  37. G. Galli, F. Gygi and J.-C. Golaz, Phys. Rev. B 57, 1860 (1998).

    ADS  Google Scholar 

  38. D. W. Snoke, M. Cardona, S. Sanguinetti and G. Benedek, Phys. Rev. B 53, 12641 (1996).

    ADS  Google Scholar 

  39. J. C. Grossman, S. G. Louie, and M. L. Cohen, Phys. Rev. B 60, R6941 (1999).

    ADS  Google Scholar 

  40. O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).

    Article  ADS  Google Scholar 

  41. M. Schluter, M. Lannoo, M. Needels, G. A. Baraff, and D. Tomanek, Phys. Rev. Lett. 68, 526 (1992).

    Article  ADS  Google Scholar 

  42. N. Breda, R. A. Broglia, G. Colò, G. Onida, D. Provasi, and E. Vigezzi, Phys. Rev. B 62, 130 (2000).

    ADS  Google Scholar 

  43. L. D. Rotter, Z. Schlesinger, J. P. McCauley, Jr., N. Coustel, J. E. Fisher, and A. B. Smith III, Nature 355, 532 (1992).

    Article  ADS  Google Scholar 

  44. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig and R. P. H. Chang, Appl. Phys. Lett. 72, 2912 (1998).

    Article  ADS  Google Scholar 

  45. C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, Appl. Phys. Lett. 70, 1480 (1997).

    Article  ADS  Google Scholar 

  46. A. L. Machay and H. Terrones, Nature 352, 762 (1991).

    Article  ADS  Google Scholar 

  47. D. Vanderbilt and J. Tersoff, Phys. Rev. Lett. 68, 511 (1992).

    Article  ADS  Google Scholar 

  48. S. Gaito, L. Colombo and G. Benedek, Europhys. Lett. 44, 525 (1998).

    Article  ADS  Google Scholar 

  49. M. O’Keeffe, G. B. Adams, and O. F. Sankey, Phys. Rev. Lett. 68, 2325 (1992).

    Article  ADS  Google Scholar 

  50. G. Benedek, L. Colombo, S. Gaito, E. Galvani and S. Serra, J. Chem. Phys. 106, 2311 (1997).

    Article  ADS  Google Scholar 

  51. M. Cotè, J. C. Grossman, M. L. Cohen and S. G. Louie, Phys. Rev. B, 58, 664 (1998); the two structures proposed by these authors are identical to the hollow graphites fcc-C 20 and fcc-C 22 first described and calculated by G. Benedek et al. [50]

    Google Scholar 

  52. P. Milani and S. Iannotta, Cluster Beam Synthesis of Nanostructured Materialsi, Springer Series in Cluster Physics (Springer, Berlin 1999).

    Book  Google Scholar 

  53. D. Donadio, L. Colombo, P. Milani and G. Benedek, Phys. Rev. Lett. 83, 776 (1999).

    Article  ADS  Google Scholar 

  54. S. Spadoni, L. Colombo, P. Milani and G. Benedek, Europhys. Lett. 39, 269 (1997).

    Article  ADS  Google Scholar 

  55. T. Lenosky, X. Gonze, M. Teter, and V. Elser, Nature 355, 333 (1992).

    Article  ADS  Google Scholar 

  56. P. Milani et al., private communication.

    Google Scholar 

  57. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, Science 282, 897 (1988).

    Article  ADS  Google Scholar 

  58. A. L. Machay, Nature 314, 604 (1985); the term schwarzite honors the work of H. A. Schwarz, Gesammelte Mathematische Abhaudlungen, Vols, l, 2 (Springer, Berlin 1890), on the minimal periodic surfaces.

    Article  ADS  Google Scholar 

  59. V. Rosato, M. Celino, G. Benedek and S. Gaito, Phys. Rev. B 60, 16928 (1999).

    Article  ADS  Google Scholar 

  60. C.H. Xu, C.Z. Wang, C.T. Chan, and K.M. Ho, J. Phys.: Condens Matter 4, 6047 (1992).

    Article  ADS  Google Scholar 

  61. D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie (Springer, Berlin) 1932.

    MATH  Google Scholar 

  62. G. van Helden, N. Gotts, and M. Bowers, Nature 363, 60 (1993).

    Article  ADS  Google Scholar 

  63. E. Barborini et al., Chem. Phys. Lett. 300, 633 (1999).

    Article  ADS  Google Scholar 

  64. P. Milani, M. Ferretti, P. Piseri, C. E. Bottani, A. Ferrari, A. Li Bassi, G. Guizzetti, and M. Patrini, J. Appl. Phys. 82, 5793 (1997).

    Article  ADS  Google Scholar 

  65. M. Bogana, D. Donadio, G. Benedek and L. Colombo, Europhys. Lett. in press (2001).

    Google Scholar 

  66. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    ADS  Google Scholar 

  67. D. Mura, L. Colombo, R. Bertoncini, and G. Mula, Phys. Rev. B 58, 10357 (1998).

    ADS  Google Scholar 

  68. The fraction of occupied volume has been estimated by construction of Voronoi polyhedra, whose volume was assigned to “occupied space” provided that the selected polyhedra contained a carbon atom.

    Google Scholar 

  69. W.R. Even Jr. and D.P. Gregory, Mat. Res. Soc. Bull. XIX, 29 (1994).

    Google Scholar 

  70. P. Milani et al., J. Appl. Phys. 82, 5793 (1997).

    Article  ADS  Google Scholar 

  71. E. Barborini, P. Piseri and P. Milani, Europ. J. Phys. D 32, 105, (1998).

    Google Scholar 

  72. A. L. Barabasi, H. E. Stanley Fractal Concepts in Surface Growth, Cambridge University Press (Cambridge, 1983).

    Google Scholar 

  73. R. Buzio, E. Gnecco, C. Boragno, U. Valbusa, P. Piseri, E. Barborini and P. Milani, Surf. Sci. 444, L1 (2000).

    Article  Google Scholar 

  74. P. Milani, A. Podestà, P. Piseri, E. Barborini, C. Lenardi and C. Castelnovo, Diamond Relat. Mater. in press (2001).

    Google Scholar 

  75. C. Lenardi, P. Piseri, V. Briois, C. E. Bottani, A. Li Bassi, and P. Milani, J. Appl. Phys. 85, 7159 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Benedek, G., Bernasconi, M., Donadio, D., Colombo, L. (2001). Covalent Cluster-Assembled Carbon Solids. In: Benedek, G., Milani, P., Ralchenko, V.G. (eds) Nanostructured Carbon for Advanced Applications. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0858-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0858-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7042-0

  • Online ISBN: 978-94-010-0858-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics