Skip to main content

Process Technology and Process Integration in the Preparation of Penicillins

  • Chapter
Synthesis of β-Lactam Antibiotics

Abstract

The antibiotic penicillin G (Pen G) is the most common raw material for semisynthetic β-lactam antibiotics. Key-intermediate for β-lactam antibiotics is 6-6-aminopenicillanic acid (APA), the β-lactam nucleus, which has a worldwide annual production volume of approximately 10,000 tons. Pen G is produced fermentatively by adding phenylacetic acid (PAA) to a crude fermentation broth. Pen G is converted, either chemically or enzymatically, to APA and PAA. Coupling chemically or enzymatically different side chains to APA can yield a wide range of semisynthetic penicillins with different specificities and stabilities. Examples of bulk semisynthetic antibiotics are Amoxicillin (Amox) and Ampicillin (Ampi) (Van de Sandt and De Vroom, 2000; Bruggink et al., 1998). These antibiotics have market sales worth of ca. $ 3 billion per year as bulk-formulated drug; further market information is given in chapter 1. Figure IV.1 shows a general overview of the route for synthesis of Amox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

§10 References

  • Andersson E, Mattiasson B, Hahn-Hägerdal B. 1994. Enzymatic conversion in aqueous two-phase systems: deacylation of benzylpenicillin to 6-aminopenicillanjc acid with penicillin acylase. Enzyme Microb Technol 6:301–306.

    Article  Google Scholar 

  • Barenschee T, Scheper T, Schügerl. 1992. An integrated process for the production and biotransformation of penicillin. J Biotech 26:143–154.

    Article  CAS  Google Scholar 

  • Blinkovsky AM, Markaryan AN. 1993. Synthesis of β-lactam antibiotics containing α-aminophenylacetyl group in the acyl moiety catalyzed by D(-) α-phenylglycyl-β-lactamide amidohydrolase. Enzyme Microb Technol 15:965–973.

    Article  CAS  Google Scholar 

  • Bruggink A, Roos EC, De Vroom E. 1998. Pencillin acylase in the industrial production of β-lactam antibiotics. Org Proc Res Dev 2:128–133.

    Article  CAS  Google Scholar 

  • Chayen, N.E., Radcliffe, J.W. and Blow, D.M. 1993. Control of nucleation in the crystallization of lysozyme, Protein Science, 2:113–118.

    Article  CAS  Google Scholar 

  • Clausen K, Dekkers RM. 1996. Process for preparation of β-lactams at constantly high concentration of reactants. Int Patent Appl WO 96/02663.

    Google Scholar 

  • Collander, R. 1951. Acta Chem. Scan. 5, 774–780, 1951

    Article  CAS  Google Scholar 

  • Davey, R.J. 1976. The effect of impurity adsorption on the kinetics of crystal growth from solution, Journal of Crystal Growth, 34:109–119.

    Article  CAS  Google Scholar 

  • Den Hollander J.L., A.J.J. Straathof and L.A.M. van der Wielen. 2001a. Design of fractionating enzymatic reactors for hydrolysis reactions. Submitted.

    Google Scholar 

  • Den Hollander J.L., A. Aversente, M.B. Diender, A.J.J. Straathof and L.A.M. van der Wielen. 2001b. Enzymatic penicillin G hydrolysis in discretely contacted countercurrent water — butyl acetate biphasic systems. Submitted.

    Google Scholar 

  • Den Hollander J.L., M. Zomerdijk, A.J.J. Straathof and L.A.M. van der Wielen. 2001c. A continuous countercurrent enzyme reactor for the hydrolysis of penicillin G. Submitted.

    Google Scholar 

  • Diender MB. 2001. New process concepts for the enzymatic synthesis of Amoxicillin from penicillin G. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Diender MB, Straathof AJJ, Van der Wielen LAM, Ras C, Heijnen JJ. 1998a. Feasibility of the thermodynamically controlled synthesis of Amoxicillin. J Mol Catal B: Enz 5:249–253.

    Article  CAS  Google Scholar 

  • Diender MB, Straathof AJJ, Heijnen JJ. 1998b. Predicting enzyme catalyzed reaction equilibria in cosolvent-water mixtures as a function of pH and solvent composition. Biocatal Biotransform 16:275–289.

    Article  CAS  Google Scholar 

  • Diender MB, Straathof AJJ, Van der Does T, Zomerdijk M, Heijnen JJ. 2000. Course of pH during the formation of Amoxicillin by a suspension-to-suspension reaction. Enzyme Microb Technol 27:576–582.

    Article  CAS  Google Scholar 

  • Diender MB, Straathof AJJ, Van der Does T, Ras C, Heijnen JJ. 2001a. Equilibrium modelling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization. Submitted.

    Google Scholar 

  • Diender MB, Straathof AJJ, Van der Does T, Heijnen JJ. 2001b. Modeling the influence of ionic strength on α-amino acid ester hydrolase in the salt-free production of Amoxicillin. Submitted.

    Google Scholar 

  • Diender MB, Straathof AJJ, Van der Does T, Heijnen JJ. 2001c. Feasibility of a one-pot shortcut route from penicillin G to amoxicilin in anhydrous organic solvent. Submitted.

    Google Scholar 

  • Dye, S.R., J.P. DeCarli II and G. Carta. 1990. Equilibrium sorption of amino acids by a cation exchange resin. Ind. Eng. Chem. Res. 29:849–857

    Article  CAS  Google Scholar 

  • Eggers DK, Blanch HW, Prausnitz JM. 1989. Extractive equilibria: solvent effects onequilibria of enzymatic reactions in two-phase systems. Enzyme Microb Technol 11:84–89.

    Article  CAS  Google Scholar 

  • Eiteman, M.A., and J.L. Gainer. 1991. Predicting partition coefficients in polyethylene glycol — potassium phosphate aqueous two-phase systems. J. Chrom. 586:341–346.

    Article  CAS  Google Scholar 

  • Eiteman, M.A. and J.L. Gainber. 1992. A correlation for predicting partition coefficients in aqueous two-phase systems. Sep. Sci. Technol. 27:313–324.

    Article  CAS  Google Scholar 

  • El-Tayar, N., R.S. Tsai, P. Vallet, C. Altomare and B. Testa. 1991. Measurement of partition coefficients by various centrifugal partition chromatographic columns. J. Chrom. 556:181–194.

    Article  CAS  Google Scholar 

  • Erbeldinger M, Ni X, Hailing PJ. 1998. Enzymatic synthesis with mainly undissolved substrates at very high concentrations. Enzyme Microb Technol 23:141–148.

    Article  CAS  Google Scholar 

  • Erbeldinger M, Ni X, Hailing PJ. 1999. Kinetics of enzymatic solid-to-solid peptide synthesis: intersubstrate compound, substrate ratio and mixing effects. Biotechnol Bioeng 63:316–321.

    Article  CAS  Google Scholar 

  • Fernandez-Lafuente R, Rosell CM, Piatkowska B, Guisán JM. 1996. Synthesis of antibiotics (cephaloglycin) catalyzed by penicillin G acylase: Evaluation and optimization of different synthetic approaches. Enzyme Microb Technol 19:9–14.

    Article  CAS  Google Scholar 

  • Fernandez-Lafuente R, Rosell CM, Guisán JM. 1991a. Equilibrium controlled synthesis of cephalothin in cosolvent-water systems by stabilized penicillin G acylase. Appl Biochem Biotechnol 27:277–290.

    Article  CAS  Google Scholar 

  • Fernandez-Lafuente R, Rosell CM, Guisán JM. 1991b. Enzyme reaction engineering: synthesis of antibiotics catalysed by stabilized penicillin acylase in the presence of organic cosolvents. Enzyme Microb Technol 13:898–909.

    Article  CAS  Google Scholar 

  • Flaschel E, Crelier S, Schulz K, Huneke FU, Renken A. 1992. Process development for the optical resolution of phenylalanine by means of chymotrypsin in a liquid-liquid-solid three-phase reaction system. In: Tramper J, Vermuë MH, Beeftink HH, von Stockar U, editors. Biocatalysis in non-conventional media. Elsevier Science Publishers, Amsterdam p. 163–170.

    Google Scholar 

  • Freeman A, Woodley JM, Lilly MD. 1993. In situ product removal as a tool for bioprocessing. Bio/Technology 11:1007–1012.

    Article  CAS  Google Scholar 

  • Frank, F.C. 1949. Disc. Faraday Soc. 48: 67.

    Google Scholar 

  • Gmehling, J. and U. Onken. 1977. Vapour-Liquid Equilibrium Data Collection. Aqueous-Organic Systems. Vol. 1., Chem. Data Ser., Dechema, Frankfurt.

    Google Scholar 

  • Grant, D.J.W. and T. Higuchi. 1990. Solubility behavior of organic compounds. Techniques of Chemistry, vol. XXI. Wiley-lnterscience Publ.

    Google Scholar 

  • Gude, M.T., H. Meuwissen, L.A.M. van der Wielen and K.Ch.A.M. Luyben. 1996a. Partition coefficients and solubilities of α-amino acids in aqueous 1-butanol solutions. Ind. Chem. Eng. Res. 35:4700–4712.

    Article  CAS  Google Scholar 

  • Gude, M.T., L.A.M. van der Wielen and K.Ch.A.M. Luyben. 1996b. Phase behavior of α-amino acids in multicomponent aqueous alkanol solutions. Fluid Phase Equilibria 116:110–117.

    Article  CAS  Google Scholar 

  • Hailing PJ, Eichhorn U, Kuhl P, Jakubke HD. 1995. Thermodynamics of solid-to-solid conversion and application to enzymic peptide synthesis. Enzyme Microb Technol 17:601–606.

    Article  Google Scholar 

  • Hernadez-Justiz O, Fernandez-Lafuente R, Terrini M, Guisán JM. 1998. Use of aqueous two-phase systems for in situ extraction of water-soluble antibiotics during their synthesis by enzymes immobilized on porous supports. Biotechnol Bioeng 59:73–79.

    Article  Google Scholar 

  • Hersbach GJM, Van der Beek CP, Van Dijck PWM. 1984. The penicillins: properties, biosynthesis and fermentation. In: Vandamme EJ, editor. Biotechnology of industrial antibiotics. New York: Marcel Dekker, Inc. p 45–140.

    Google Scholar 

  • Homandberg GA, Mattis JA, Laskowski JM. 1978. Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shift peptide bond equilibria toward synthesis. Biochemistry 17:5220–5227.

    Article  CAS  Google Scholar 

  • Jansen ML. 1996. Integration of ion exchange chromatography with an enzymatic reaction. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Janssen AEM, Van der Padt A, Van’ t Riet K. 1995. Prediction of the reaction equilibrium of biocatalytic reactions in aqueous-organic two-phase systems. Biocatal Biotransform 12:223–240.

    Article  CAS  Google Scholar 

  • Johansson HO, G Karlström, F Tjerneld and CA Haynes. 1999. Driving forces for phase separation and partitioning in aqueous two-phase systems. J Chrom B 711:3.

    Google Scholar 

  • Kasche V. 1986. Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme Microb Technol 8:4–16.

    Article  CAS  Google Scholar 

  • Kasche V, Galunsky B. 1994. Enzyme catalyzed biotransformations in aqueous two-phase systems with precipitated substrate and/or product. Biotechnol Bioeng 45:261–267.

    Article  Google Scholar 

  • Kato K, Kawahara K, Takahashi T, Igarasi S. 1980. Enzymatic synthesis of Amoxicillin by the cell-bound α-amino acid ester hydrolase of Xanthomonas citri. Agric Biol Chem 44:821–825.

    Article  CAS  Google Scholar 

  • Kawase M, Suzuki TB, Inoue K, Yoshimoto K, Hashimoto K. 1996. Increased esterification conversion by application of the simulated moving-bed reactor Chem Eng Sci, 51:2971–2976.

    Article  CAS  Google Scholar 

  • Kim MG, Lee SB. 1996. Penicillin acylase-catalyzed synthesis of beta-lactam antibiotics in water-methanol mixtures: effect of cosolvent content and chemical nature. J Mol Catal B: Enz 1:201–211.

    Article  CAS  Google Scholar 

  • Kosugi Y, Tanaka H, Tomizuka N. 1990. Continuous hydrolysis of oil by immobilized lipase in a countercurrent reactor. Biotechnol. Bioeng. 36: 617–622

    Article  CAS  Google Scholar 

  • Kubota, N. and Mullin, J.W. 1995. A kinetic model for crystal growth from aqueous solution in the presence of impurity, Journal of Crystal Growth, 152: 203–208.

    Article  CAS  Google Scholar 

  • Lebreton, B., Zomerdijk, M., Ottens, M., Rijkers, M., and L.A.M. van der Wielen. 1999. Effects of impurities upon crystallization kinetics of beta-lactam antibiotics, paper at the AlChE Annual Meeting, Dallas, USA.

    Google Scholar 

  • Lee DC, Kim HS. 1998. Optimization of a heterogeneous reaction system for the production of optically active D-amino acids using thermostable D-hydantoinase. Biotechnol Bioeng 60:729–738.

    Article  CAS  Google Scholar 

  • Martinek K, Semenov AN, Berezin IV. 1981a. Enzymatic synthesis in biphasic aqueous-organic systems I. Chemical equilibrium shift. Biochim Biophys Acta 658:76–89.

    Article  CAS  Google Scholar 

  • Martinek K, Semenov AN. 1981b. Enzymatic synthesis in biphasic aqueous-organic systems II. Shift of ionic equilibria. Biochim Biophys Acta 658:90–101.

    Article  CAS  Google Scholar 

  • Mazzotti, M., A. Kruglov, B. Neri, D. Gelosa and M. Morbidelli. 1996. A continuous chromatographic reactor: SMBr. Chem. Engng. Sci. 51:1827–1836.

    Article  CAS  Google Scholar 

  • McPherson, A.. 1999. Impurities, defects and crystal quality, in: Crystallization of biological macromolecules, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Mensah, P. & Carta, G. 1999. Adsorptive control of water in esterification with immobilized enzymes. Continuous operation in a periodic counter-current reactor. Biotechnol Bioeng 66:137–146.

    Article  CAS  Google Scholar 

  • Mwangi SM. 1994. Reactive precipitation of 6-aminopenicillanic acid: application of a crystallization methodology. Ph.D. thesis. University of Manchester, UK.

    Google Scholar 

  • Nakanishi K, Matsuno R. 1986. Kinetics of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanine methyl ester. Eur J Biochem 161:533–540.

    Article  CAS  Google Scholar 

  • Nakanishi K, Kimura Y, Matsuno R. 1986. Kinetics and equilibrium of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester. Eur J Biochem 161:541–549.

    Article  CAS  Google Scholar 

  • Nara T, Misawa M, Okachi R. 1977. Verfahren zur Herstellung von α-Aminobenzylpenicillin. Patent Kyowa Hakko Kogyo Co., Ltd Tokyo.

    Google Scholar 

  • Ottens, M., Lebreton, B., Zomerdijk, M., Rijkers M.P.W.M., Bruinsma D., and Van der Wielen, L.A.M. 2001. Crystallization kinetics of Ampicillin. Submitted.

    Google Scholar 

  • Rekker, R.F. 1977. The Hydrophobic Fragmental Constant-Its derivation and application — A means of characterizing membrane systems. Elsevier, Amsterdam.

    Google Scholar 

  • Reschke M, Schügerl K. 1984. Reactive extraction of penicillin. I: Stability of penicillin G in the presence of carriers and relationships for distribution coefficients and degrees of extraction. Chem Eng J 28:B1–B9.

    Article  CAS  Google Scholar 

  • Rindfleisch D, Syska B, Lazarova Z, Schügerl K. 1997. Integrated membrane extraction, enzymic conversion and electrodialysis for the synthesis of Ampicillin from penicillin G. Proc Biochem 32:605–616.

    Article  CAS  Google Scholar 

  • Rudolph, E.S.J, K.Ch.A.M. Luyben and L.A.M. van der Wielen. Phase behavior of some semi-synthetic antibiotics and their precursors in aqueous alkanol solutions. Fluid Phase Eq. 158–160, 903–912, 1999.

    Article  Google Scholar 

  • Rudolph, E.S.J, M. Zomerdijk, M. Ottens and L.A.M. van der Wielen. 2001a. Solubilities and partition coefficients of semi-synthetic antibiotics in water + 1-butanol systems. Ind. Eng. Chem. Res.

    Google Scholar 

  • Rudolph, E.S.J., Hamelink, J.M., Zomerdijk, M., Rijkers, M.P.W.M., Ottens, M., Vera, J.H. and van der Wielen, L.A.M. 2001b. Influence of electrolytes on the phase behaviour of water + β-lactam antibiotics and their precursors. To be submitted.

    Google Scholar 

  • Ryu YW, Ryu DDY 1987. Semisynthetic β-lactam antibiotics synthesising enzyme from Acetobacter turbidans: catalytic properties. Enzyme Microb Technol 10:239–245.

    Article  Google Scholar 

  • Sasagawa et al. 1990, in D. Teller. CRC Handbook of High-Performance Liquid Chromatography of Amino Acids, peptides and Proteins.

    Google Scholar 

  • Schroën CGPH, Nierstrasz VA, Kroon PJ, Bosma R, Janssen AEM, Beeftink HH, Tramper J. 1999. Thermodynamically controlled synthesis of β-lactam antibiotics. Equilibrium concentrations and side-chain properties. Enz Microb Technol 24:498–506.

    Article  Google Scholar 

  • Seader, J.D., and E.J. Henley. 1998. Separation process principles, Wiley and Sons.

    Google Scholar 

  • Straathof AJJ, Litjens MJJ, Heijnen JJ. 2001. Enzymatic transformations in suspensions. In: Enzymes in nonaqueous solvents, EN Vulfsson, PJ Hailing, HL Holland (eds.), Humana Press, Totowa, NJ, in press.

    Google Scholar 

  • Svedas VK, Margolin AL, Berezin IV. 1980. Enzymatic synthesis of β-lactam antibiotics: a thermodynamic background. Enzyme Microb Technol 2:138–144.

    Article  CAS  Google Scholar 

  • Tavare, N.S., 1995, Industrial crystallization. Process simulation analysis and Design; The Plenum Chemical Engineering Series; Plenum Press, New York.

    Google Scholar 

  • Taylor, R. and R. Krishna. 1993. Multi-component Mass Transfer, Wiley and Sons, New York.

    Google Scholar 

  • Tewari YB, Goldberg RN. 1988. Thermodynamics of the conversion of penicillin G to phenylacetic acid and 6-aminopenicillanic acid. Biophys Chem 29:245–252.

    Article  CAS  Google Scholar 

  • Tewari YB, Schantz MM, Pandey PC, Rekharsky MV, Goldberg RN. 1995. Thermodynamics of hydrolysis of N-acetyl-L-phenylalanine ethyl ester in water and in organic solvents. J Phys Chem 99:1594–1600.

    Article  CAS  Google Scholar 

  • Tsuji, A., O. Kubo, E. Miyamoto and T. Yamana. 1977. Physicochemical properties of β-lactam antibiotics: Oil-water distibution, J. Pharm. Sci. 66:1675

    Article  CAS  Google Scholar 

  • Van Berlo, M., M.T. Gude, L.A.M. van der Wielen and K.Ch.A.M. Luyben. 1997. Solubilities and partitioning of glycine in water+ethanol+butanol solutions. Ind Eng Chem Res, 36:2474–2482.

    Article  Google Scholar 

  • Van Buel, M.J., M. Gude, L.A.M. van der Wielen and K.Ch.A.M. Luyben. 1997. Gradient elution in CPC. J. Chrom. 773, 13–22.

    Article  Google Scholar 

  • Van der Wielen, L.A.M., M.J.A. Lankveld and K.Ch.A.M. Luyben. 1995. Anion exchange equilibria of Penicillin G, Phenylacetic acid and 6-Aminopenicillanic Acid versus CI-in IRA400 Ion Exchange Resin. J. Chem. Eng. Data 41:239–243.

    Article  Google Scholar 

  • Van der Wielen, L.A.M., and S.J.G. Rudolph. 1998. On the generalization of thermodynamic properties for selection of bioseparation processes. J Chem Biochem Technol 74: 275–283.

    Google Scholar 

  • Van der Wielen L.A.M. and K.Ch.A.M. Luyben. 1992. Integrated product formation and recovery in fermentation. Review. Current Opinions in Biotechnology 3:130–138.

    Article  Google Scholar 

  • Van der Wielen, L.A.M., P.J. Diepen, J. Houwers and K.Ch.A.M. Luyben. 1996. A countercurrentadsorptive reactor for acidifying bioconversions. Chem. Engng. Sci. 51:2315–2325.

    Article  Google Scholar 

  • Van de Sandt E.J.A.X., De Vroom E. 2000. Innovations in cephalosporin and penicillin production: painting the antibiotics industry green. Chimicaoggi/Chemistry today 18:72–75.

    Google Scholar 

  • Van Halsema, F.E.D., L.A.M. van der Wielen and K.Ch.A.M. Luyben. 1997. The modelling of carbon dioxide aided extraction of carboxylic acids from aqueous solutions. Ind. Eng. Chem. Res. 37:748–758.

    Article  Google Scholar 

  • Van Ness, H.C. and M.M. Abbott. 1982. Classical thermodynamics of Non-electrolyte solutions. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Wandrey C, Flaschel E. 1979. Process development and economic aspects in enzyme engineering. Acylase L-methionine system. In: Ghose TK, Fiechter A, Blakebrough N, editors. Advances in Biochemical Engineering. Vol. 12. Springer-Verlag, Berlin p. 147–218.

    Google Scholar 

  • Woodley JM, Lilly MD. 1990. Extractive biocatalysis: the use of two-liquid phase biocatalytic reactors to assist product recovery. Chem Eng Sci 45:2391–2396.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van der Wielen, L.A.M., Ottens, M., Straathof, A.J.J. (2001). Process Technology and Process Integration in the Preparation of Penicillins. In: Bruggink, A. (eds) Synthesis of β-Lactam Antibiotics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0850-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0850-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3851-5

  • Online ISBN: 978-94-010-0850-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics