Skip to main content

Optically Active Hydrogen Bonded Complexes in the Atmosphere

  • Chapter
  • 306 Accesses

Part of the book series: NATO Science Series ((NAII,volume 20))

Abstract

The study of intermolecular interactions and their spectral manifestation has attracted much attention recently. Significant progress has been achieved in the experimental investigations of systems with hydrogen bonds in the gas phase [18]. However, low concentration of complexes and interference from highly intense rotational spectra occurring in the far-IR (infrared) region makes interpretation of molecular complexes spectra difficult. A complete set of intermolecular vibrations has been determined for only a very limited number of hydrogen complexes. The main attention of researchers has concentrated on hydrogen bond systems of high and medium strength, for instance, H2O…HF [9], where IR spectra in the gas phase were completely recorded. Weak hydrogen bond systems, such as H2O…HC1, are much less completely understood in spite of their chemical importance. Geometry of this complex was determined by rotational spectroscopy in the gas phase [10], however data on vibration spectra are limited to intramolecular modes in solid matrices [1113]. In Ref. [14] the calculations of H2O…HC1 complex were carried out by ab initio methods and vibration frequencies and geometry of the complex were determined. The aim of the present work is a quantum mechanical study of stability and vibration spectra of 1:2 and 2:1 (H2O)n(HCl)m and (H2O)n(HF)m (n,m ≥ 2) complexes. The correct quantum mechanical studies place rather demanding requirements on the choice of an optimum method of calculation. The most consistent and reliable method is ab initio method of restricted Hartree-Fock-Roothaan (RHF) [15].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyke, T.R. (1984) Top.Current.Chem. 120, 85.

    Article  Google Scholar 

  2. Celli, F.G., Janda, K.S. (1986) Chem.Rev. 86, 507.

    Article  Google Scholar 

  3. Miller, R.E. (1986) J.Phys.Chem. 90, 3301.

    Article  Google Scholar 

  4. Knözinger, E., Schrems, O. (1987) in J.R. During (ed.), Vibrational Spectra and Structure, Elsevier, Amsterdam, Vol. 16.

    Google Scholar 

  5. Barnes, A.J. (1980) in H. Ratajczak and W.J. Orville-Thomas (eds.), Molecular Interactions, Vol.1., pp.273–279, Wiley, Chichester, Vol.1., pp.273-279.

    Google Scholar 

  6. Barnes, A.J. (1983) J.Mol.Struct. 100, 259.

    Article  Google Scholar 

  7. Howard, J., Waddington, T.C. (1980) in R.H. Clark and R.E. Hester (eds.), Advances in Infrared and Raman Spectroscopy, Heyden, London, Vol.7, p.86.

    Google Scholar 

  8. Chemical Applications of Thermal Neutron Scattering (1973), B.T.M. Willes (ed.), Oxford University, London.

    Google Scholar 

  9. Thomas, R.K. (1975) Hydrogen bonding in the vapor phase between water and hydrogen fluoride: the infrared spectrum of the 1:1 complex”, R.Soc.Lond.A 344, 579–593.

    Article  Google Scholar 

  10. Legon, A.C., Willoughby, L.C. (1983), Chem.Phys.Lett. 95, 37.

    Article  Google Scholar 

  11. Ault, B.S., Pimentel, G.C. (1973), J.Phys.Chem. 77, 37.

    Google Scholar 

  12. Ayers, G.P., Pullin, A.D.E. (1976), Spectrichim.Acta.Part A. 32, 1641.

    Article  Google Scholar 

  13. Schriver, A., Silvi, B., Maillard, D., Perchard, J.P. (1977), J.Chem.Phys. 81, 2095.

    Article  Google Scholar 

  14. Latajka, Z., Scheiner, S., (1987) Structure, energetics, and vibrational spectrum of H2O-HC1, J.Chem.Phys. 87, 5928–5936.

    Article  Google Scholar 

  15. Zülike, L. (1972) Quantum Chemistry, Vol.1, Mir, Moskwa.

    Google Scholar 

  16. Lunichev, V.N. (1979) Structural features of non-rigid molecules with large nucleus amplitudes, Candidate Thesis, Moskwa.

    Google Scholar 

  17. Lunichev, V.N. (1979), J. Structurnoj Chimii 20, 20–25.

    Google Scholar 

  18. Peterson, M.R., Poirer, R. (1990), Monstergauss. Department of Chemistry, University of Toronto, Toronto, Canada, Memorial University of Newfoundland, Newfoundland, Canada.

    Google Scholar 

  19. M.J.D. Powel, M.J.D. (1970), in, P. Rabinowitz (ed.), Numerical methods for nonlinear algebraic equations, P. Rabinowitz, Gordon and Breach, London, p.87.

    Google Scholar 

  20. Suchanov, L.P. (1983), Theoretical Investigation of Physical-Chemical Properties of light metals hydride olygomers, Candidate Thesis, Moskwa.

    Google Scholar 

  21. Yamaguchi, Y., Schaefer III, H.F.A. (1980), J.Chem.Phys. 73, 2310–2318.

    Article  Google Scholar 

  22. Hout, R.F., Levi, B.A., Hehre, W.J. (1982), J.Comput.Chem. 3, 234–250.

    Article  Google Scholar 

  23. Frisch, M.J., Del Bene, J.E., J.S. Binkley, J.S., Schaefer III, H.F. (1986), J.Chem.Phys. 84, 2279.

    Article  Google Scholar 

  24. Barnes, A.J., Orville-Thomas, W.J. (1980), J.Mol.Spectrosc. 84, 391.

    Article  Google Scholar 

  25. Shimanouchi, T. (1972), Tables of Molecular Vibrational Frequencies, Vol. 1, Natl.Stand.Ref.Data.Scr.Natl.Bur.Stand.No39 (National Bureau of Standarts), Washington.

    Google Scholar 

  26. Berti, J.E., Falk, M.V. (1973), Can.J.Chem. 51, 1713.

    Article  Google Scholar 

  27. Kisiel, Z., Legon, A.C., Millen, D.J. (1982), Proc.R.Soc.London.A. 381, 419.

    Article  Google Scholar 

  28. Coker, D.F., Miller, R.E., Watts, R.O. (1985), J.Chem.Phys. 82, 3554–3562.

    Article  Google Scholar 

  29. Wuelfert, S., Herren, D., Leutwyien, S. (1987), J.Chem.Phys. 86, 3751–3753.

    Article  Google Scholar 

  30. Huber, K.P., Herzberg, G. (1979), in Molecular Spectra and Molecular Structure, Van Nostrand Reinhold, New York,Vol. l4

    Google Scholar 

  31. Clough, S.A., Bears, Y., Klein, G.P., Rothman, L.S. (1973), J.Chem.Phys. 59, 2254.

    Article  Google Scholar 

  32. Deleeuw, F.H., Dymanus, A. (1973), J.Mol.Spectrosc. 48, 427.

    Article  Google Scholar 

  33. Stull, D.R., Prophet, J. (1971), JANAF Thermochemical Tables. — Natl.Stand.Ref.Data.Scr.Natl.Bur.Stand (National Bureau of Standarts), Washington, Vol. 37.

    Google Scholar 

  34. Andrews, L. and Johnson, G.L. (1983), J.Chem.Phys. 3670.

    Google Scholar 

  35. Rovira, C., Constants, P., Whangbo, M.H, Novoa, J.J. (1994), International Journal of Quantum Chemistry 52, 177.

    Article  Google Scholar 

  36. Sokolov, N.D. (1981), Dynamics of hydrogen bonding, in N.D. Sokolov (ed.), Hydrogen bonding, Nauka, Moscow, pp. 63–88.

    Google Scholar 

  37. Szczesniak, M.M., Scheiner, S., Bouteiller, Y. (1984), J.Chem.Phys. 81, 5024.

    Article  Google Scholar 

  38. Hannachi, Y., Silvi, B., Bouteiller, Y. (1991), J.Chem.Phys. 94, 2915.

    Article  Google Scholar 

  39. Zvereva, N.A., Nabiev, Sh.Sh., Ponomarev, Yu.N. (1999), Energies of vertical S0-S1 transitions of optical active complexes with hydrogen bonds, Optics of atmosphere and ocean 12, 843–846.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zvereva, N.A. (2001). Optically Active Hydrogen Bonded Complexes in the Atmosphere. In: Demaison, J., Sarka, K., Cohen, E.A. (eds) Spectroscopy from Space. NATO Science Series, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0832-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0832-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6993-6

  • Online ISBN: 978-94-010-0832-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics