Skip to main content

Geostatistical Modeling of Regionalized Grain-Size Distributions Using Min/Max Autocorrelation Factors

  • Conference paper
geoENV III — Geostatistics for Environmental Applications

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 11))

Abstract

Sediment grain-size distributions can be represented in a discrete form, as vectors of coregionalized size-class abundances. Since the number of classes may be large and abundances in adjacent classes may be highly cross-correlated, practical simulation of regionalized grain-size distributions requires an efficient method for de-correlating and reducing the number of variables. Using an example based on detailed grain-size measurements from the Las Cruces Trench Site, this study demonstrates features of Min/Max Autocorrelation Factors that make them a superior alternative to Principal Components for dimensional reduction and decorrelation in simulations of coregionalized variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitchison, J. (1986). The statistical analysis of compositional data, Chapman and Hall, London.

    Book  MATH  Google Scholar 

  • Berman, M. (1985). The statistical properties of three noise removal procedures for multichannel remotely sensed data, CSIRO Div. of Mathematics and Statistics, Consulting Rep. NSW/85/31/MB9, 37p.

    Google Scholar 

  • Deutsch, C.V. and A.G. Journel (1992). GSLIB: Geostatistical software library and user’s Guide, Oxford Univ. Press.

    Google Scholar 

  • Desbarats, A.J. and R. Dimitrakopoulos (2000). “Geostatistical simulation of regionalized poresize distributions using Min/Max Autocorrelation Factors”, Math. Gool., 32(8), 919–942.

    Article  Google Scholar 

  • Fair, G.M. and L.P. Hatch (1933). “Fundamental factors governing the streamflow of water through sand”, J. Amer. Water Works. Ass., 25, 1551–1565.

    Google Scholar 

  • Goovaerts, P. (1993). “Spatial orthogonality of the principal components computed from coregionalized variables”, Math. Gool., 25(3), 281–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Goulard, M. and M. Voltz (1993). “Geostatistical interpolation of curves: A case study in soil science”, in Geostatistics Troia’92, Soares A. (Ed), vol 2, 805–816, Kluwer, Dordrecht.

    Chapter  Google Scholar 

  • Green, A.A., M. Berman, P. Switzer and M.D. Craig (1988). “A transform for ordering multispectral data in terms of image quality with implications for noise removal”, IEEE Goose. Rem. Sens., 26(1), 65–74.

    Article  Google Scholar 

  • Grunsky, E.C. and F.P. Agterberg (1988). “Spatial and multivariate analysis of geochemical data from metavolcanic rock in the Ben Nevis area, Ontario”, Math. Geol., 20(7), 825–862.

    Article  Google Scholar 

  • Klovan, J. E. (1966). “The use offactor analysis in determining depositional environments from grain-size distributions”, Jour. of Sed. Petrol., 36, 115–125.

    Google Scholar 

  • Pawlowsky, V. and H. Burger (1992). “Spatial structure analysis of regionalized compositions”, Math. Geol., 24(6), 675–691

    Article  Google Scholar 

  • Switzer, P. and A.A. Green (1984). Min/Max autocorrelation factors for multivariate spatial imaging, Tech. Rep. no. 6, Dept. of Statistics, Stanford University.

    Google Scholar 

  • Tercan, A.E. (1999). “Importance of orthogonalization algorithm in modeling conditional distributions by orthogonal transformed indicator methods”, Math. Geol., 31(2), 155–173.

    Google Scholar 

  • Wackernagel, H. (1995). Multivariate Geostatistics, Springer, Berlin.

    MATH  Google Scholar 

  • Wierenga, P.J., A.F. Toorman, D.B. Hudson, J. Vinson. M. Nash and R.G. Hills (1989). Soil Physical Properties at the Las Cruces Trench Site, Rep. NUREG/CR-5541, U.S. Nucl. Reg. Comm., Wash. D.C.,

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Desbarats, A.J. (2001). Geostatistical Modeling of Regionalized Grain-Size Distributions Using Min/Max Autocorrelation Factors. In: Monestiez, P., Allard, D., Froidevaux, R. (eds) geoENV III — Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0810-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0810-5_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7107-6

  • Online ISBN: 978-94-010-0810-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics