Advertisement

Laser-Induced Bubbles in Cavitation Research

  • Werner Lauterborn
  • Thomas Kurz
  • Cordt Schenke
  • Olgert Lindau
  • Bernhard Wolfrum
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 62)

Abstract

The strength of shock waves is measured with a fiberoptic hydrophone in dependence on bubble radius for ns laser pulses. The peak pressures at the bubble wall upon collapse range from 10 kbar to 25 kbar for maximum bubble radii between 0.5 mm and 3 mm. Cavitation bubble luminescence is determined in dependence on hydrostatic pressure. A maximum in light output is obtained at elevated hydrostatic pressure for constant laser energy input. The dynamics and luminescence properties of strongly elongated bubbles from fs laser pulses are investigated.

Keywords

cavitation luminescence shock waves laser-produced bubbles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dan, M., Cheeke, J. D. N., and Kondic, L. (1999). Ambient pressure effect on single-bubble sonoluminescence. Phys. Rev. Lett., 83(9):1870–1873.ADSCrossRefGoogle Scholar
  2. Dezhkunov, N., Iernetti, G., Francescutto, A., Reali, M., and Ciuti, P. (1997). Cavitation erosion and sonoluminescence at high hydrostatic pressures. Acustica, 83:19–24.Google Scholar
  3. Holzfuf, J., Rüggeberg, M., and Billo, A. (1998). Shock wave emission of a sonoluminescing bubble. Phys. Rev. Lett., 81(24):5434–5437.ADSCrossRefGoogle Scholar
  4. Lauterborn, W., Kurz, T., Mettin, R., and Ohl, C. D. (1999). Experimental and theoretical bubble dynamics. In Prigogine, I. and Rice, S. A., editors, Advances in Chemical Physics, volume 110, pages 295–380. Wiley, New York.CrossRefGoogle Scholar
  5. Ohl, C.-D., Lindau, O., and Lauterborn, W. (1998). Luminescence from spherically and aspherically collapsing laser induced bubbles. Phys. Rev. Lett., 80(2):393–396.ADSCrossRefGoogle Scholar
  6. Philipp, A. and Lauterborn, W. (1998). Cavitation erosion by single laser-produced bubbles. J. Fluid Mech., 361:75–116.ADSzbMATHCrossRefGoogle Scholar
  7. Staudenraus, J. and Eisenmenger, W. (1993). Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water. Ultrasonics, 31:267–274.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Werner Lauterborn
    • 1
  • Thomas Kurz
    • 1
  • Cordt Schenke
    • 1
  • Olgert Lindau
    • 1
  • Bernhard Wolfrum
    • 1
  1. 1.Drittes Physikalisches InstitutUniversität GöttingenGöttingenGermany

Personalised recommendations