Skip to main content

Balance, Potential-Vorticity Inversion, Lighthill Radiation, and the Slow Quasimanifold

  • Conference paper

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 61))

Abstract

Practically our entire understanding of large-scale atmosphere-ocean dynamics depends on the notions of balance and potential-vorticity inversion. These are essential, for instance, for a clear understanding of the basic Rossby-wave propagation mechanism, or quasi-elasticity, that underlies almost every large-scale fluid-dynamical phenomenon of meteorological and oceanographical interest, from the global-scale transport of terrestrial greenhouse gases (and similar problems in the solar interior) to Rossby-wave-mediated global teleconnection, baroclinic and barotropic shear instability, vortex coherence, and vortex-core isolation. The ideas involved in understanding balance and inversion continue to hold special fascination because of their central importance both for theory and for applications, such as data assimilation, and the fact that complete mathematical understanding is still elusive. The importance for applications was adumbrated by Richardson in his pioneering study of numerical weather prediction. The importance for theory — and the exquisite subtlety involved — was adumbrated by Poincaré in his discovery of the homoclinic tangle, and by Lighthill in his discovery of the quadrupole nature of acoustic radiation by unsteady vortical motion.

The Centre for Atmospheric Science is a joint initiative of the Department of Chemistry and the Department of Applied Mathematics and Theoretical Physics (http://www.atm.damtp.cam.ac.uk/).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnol’d, V. I., 1978: Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 462 pp.

    Google Scholar 

  • Bokhove, O., and Shepherd, T. G., 1996: On Hamiltonian balanced dynamics and the slowest invariant manifold. J. Atmos. Sci., 53, 276–297.

    Article  Google Scholar 

  • Charney, J. G., 1948: On th e scale of atmospher ic motions. Geofysiske Publ., 17(2), 3–17.

    Google Scholar 

  • Ertel, H., 1942: Ein Neuer hydrodynamischer Wirbelsatz. Met. Z., 59, 271–281.

    Google Scholar 

  • Ford, R., 1994: Gravity wave radiation from vortex trains in rotating shallow water, J. Fluid Mech., 281, 81–118.

    Article  Google Scholar 

  • Ford, R., et al., 2000: Balance and the slow quasimanifold: some explicit results, J. Atmos. Sci., 57, 1236–1254.

    Article  Google Scholar 

  • Gent, P. R., McWilliams, J. C., 1984: Balanced models in isent ropic coordinates and the shallow water equations. Tellus, 36A, 166–171.

    Article  Google Scholar 

  • Gough, D. O., McIntyre, M. E., 1998: Inevitability of a magnetic field in the Sun’s radiative interior. Nature, 394, 755–757.

    Article  Google Scholar 

  • Haynes, P. H., 1989: The effect of barotropic instability on the nonlin ear evolution of a Rossbywave critical layer, J. Fluid Mech., 207, 231–266.

    Article  Google Scholar 

  • Hoskins, B. J., et al., 1985: On the use and sign ificance of isentropic potential-vorticity maps, Q. J. Roy. Meteorol. Soc., 111, 877–946; Corrigendum, 113, 402–404.

    Article  Google Scholar 

  • Killworth, P. D., McIntyre, M. E., 1985: Do Rossby-wave critical layers absorb, reflect or overreflect? J. Fluid Mech., 161, 449–492.

    Article  Google Scholar 

  • Kleinschmidt, E., 1950-1: Über Aufbau und Entstehung von Zyklonen (1–3 Teil). Met. Runds., 3, 1–6; 3, 54–61; 4, 89–96.

    Google Scholar 

  • Lahoz, W. A., et al., 1996: Vortex dynamics and the evolution of water vapour in the stratosphere of the southern hemisphere. Q. J. Roy. Meteorol. Soc., 122, 423–450.

    Article  Google Scholar 

  • Lighthill, M. J., 1952: On sound generated aerodynamically, Proc. Roy. Soc. Lond., A 211, 564–587.

    Google Scholar 

  • Manney, G. L., et al., 1994: Simulations of the February 1979 stratospheric sudden warming: model comparisons and three-dimensional evolution. Mon. Wea. Rev., 122, 1115–1140.

    Article  Google Scholar 

  • McIntyre, M. E., 1982: How well do we understand the dyn am ics of stratospheric warmings? J. Meteorol. Soc. Japan, 60, 37–65 [Special middle-atmosphere issue, ed. K. Ninomiya. NB: “latitude” should be “altitude” on page 39a line 2.]

    Google Scholar 

  • McIntyre, M. E., 2000: On global-scale atmospheric circulations. In: Perspectives in Fluid Dynamics: A Collective Introduction to Current Research, ed. G. K. Batchelor, H. K. Moffatt, M. G. Worster, 557–624. Cambridge, University Press, 631 pp. Corrigenda: (1) The symbols × for 3-dimensional vector products were all misprinted as GL; (2) the evaporation feedback at the tropical sea surface (p. 621) may be st rongly compensated radiatively; see Held and Soden 2000, Ann. Rev. Energy Environment, 25, 441–475.

    Google Scholar 

  • McIntyre, M. E., Norton, W. A., 2000: Potential-vorticity inversion on a hemisphere. J. Atmos. Sci., 57, 1214–1235. Corrigendum 58, 949 and on www.atm.damtp.cam.ac.uk/people/mem/

    Article  Google Scholar 

  • McIntyre, M. E., Palmer, T. N., 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593–600.

    Article  Google Scholar 

  • McIntyre, M. E., Palmer, T. N., 1984: The “surf zone” in th e stratosphere. J. Atm. Terr. Phys., 46, 825–849.

    Article  Google Scholar 

  • McIntyre, M. E., Palmer, T. N., 1985: A not e on th e general concept of wave breaking for Rossby and gravity waves. Pure Appl. Geophys., 123, 964–975.

    Article  Google Scholar 

  • McIntyre, M. E., Roulstone, I., 1996: Hamiltonian ba lan ced mod els: con straints, slow manifolds, and velocity splitting. Forecasting Research Scientific Paper 41, Meteorological Office, U.K. Shortened and corrected version in revision for J. Fluid Mech.; full text and corrections available at http:// www.atm.damtp.cam.ac.uk/people/mem/

    Google Scholar 

  • McIntyre, M. E., Roulstone, I., 2001: Are there higher-accuracy analogues of semigeostrophic theory? In: Large-scale Atmosphere-Ocean Dynamics: II: Geometric Methods and Models (Proc. Newton Inst. Programme on Mathematics of Atmosp here and Ocean Dynamics), ed. I. Roulstone and J. Norbury. Cambridge, University Press, in press.

    Google Scholar 

  • Mohebalhojeh, A. R., Dritschel, D. G., 2001: Hierarchies of balance conditions for the f-plane shallow water equations. J. Atmos. Sci., in press.

    Google Scholar 

  • Mote, P. W., et al., 1996: An atmospheric tap e recorder: the imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 3989–4006.

    Article  Google Scholar 

  • Mote, P. W., et al., 1998: Vertical velocity, vertical di ffusion, and dilution by midlatitude air in the tropical lower stratosphere. J. Geophys. Res., 103, 8651–8666.

    Article  Google Scholar 

  • Norton, W. A., 1994: Breaking Rossby waves in a model stratosphere diagnosed by a vortexfollowing coordinate system and a technique for advecting material contours. J. Atmos. Sci., 51, 654–673.

    Article  Google Scholar 

  • Norton, W. A., et al., 2000: Brewer-Dobson Workshop (report plus transcripts of invited lectures by J. R. Holton and A. W. Brewer). SPARC Newsletter 15, 25–32. Available from sparc.office@aerov.jussieu.fr, also http://www.aero.jussieu.fr/~sparc/ [sic].

    Google Scholar 

  • Plumb, R. A., McEwan, A. D., 1978: The instability of a forced standing wave in a viscous stratified fluid: a laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci., 35, 1827–1839.

    Article  Google Scholar 

  • Plumb, R. A., et al., 1994: Intrusions into the lower stratospheric Arctic vortex during the winter of 1991–92. J. Geophys. Res., 99, 1089–1105.

    Article  Google Scholar 

  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417–443.

    Article  Google Scholar 

  • Riese, M., et al., 2001: Stratospheric transport by planetary wave mixing as observed during CRISTA-2. J. Geophys. Res., submitted. See also Riese, M., 2000: Remote Sensing and Modeling of the Earth’s Middle Atmosphere: Results of the CRISTA Experiment, Habilitation thesis, Bergische Universität, Fachbereich 8, 42097 Wuppertal 1, Germany.

    Google Scholar 

  • Robinson, W. A., 1988: Analysis of LIMS data by potential vorticity inversion. J. Atmos. Sci., 45, 2319–2342.

    Article  Google Scholar 

  • Rossby, C. G., 1936: Dynamics of steady ocean currents in the light of experimental fluid mechanics. Mass. Inst. of Technology and Woods Hole Oc. Instn. Papers in Physical Oceanography and Meteorology, 5(1), 1–43. [Material PV conservation: Equation (75).]

    Google Scholar 

  • Salmon, R., 1983: Practical use of Hamilton’s principle. J. Fluid Mech., 132, 431–444.

    Article  Google Scholar 

  • Salmon, R., 1985: New equations for nearly geostrophic flow. J. Fluid Mech., 153, 461–477.

    Article  Google Scholar 

  • Salmon, R., 1988: Semigeostrophic theory as a Dirac-bracket projection. J. Fluid Mech., 196, 345–358.

    Article  Google Scholar 

  • Saujani, S., and Shepherd, T.G., 2001: Comments on “Balance and the Slow Quasimanifold: Some Explicit Results”. J. Atmas. Sci. 58, submitted; Ford, R., et al., 2001: Reply, J. Almos. Sci. 58, submitted.

    Google Scholar 

  • Stewart, R. W., Thomson, R. E., 1977: Re-examination of vorticity transfer theory. Proc. Roy. Soc. Lond., A354, 1–8.

    Google Scholar 

  • Waugh, D. W., Plumb, R. A., 1994: Contour advection with surgery: a technique for investigating finescale structure in tracer transport. J. Almos. Sci., 51, 530–540.

    Article  Google Scholar 

  • Waugh, D. W., et al., 1994: Transport of material out of the stratospheric Arctic vortex by Rossby wave breaking. J. Geophys. Res., 99, 1071–1088.

    Article  Google Scholar 

  • Whitaker, J. S., 1993: A comparison of primitive and balance equation simulations of baroclinic waves. J. Almos. Sci., 50, 1519–1530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

McIntyre, M.E. (2001). Balance, Potential-Vorticity Inversion, Lighthill Radiation, and the Slow Quasimanifold. In: Hodnett, P.F. (eds) IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics. Fluid Mechanics and Its Applications, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0792-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0792-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3853-9

  • Online ISBN: 978-94-010-0792-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics