Skip to main content

A Heteroclinic Model of Geodynamo Reversals and Excursions

  • Chapter
Dynamo and Dynamics, a Mathematical Challenge

Part of the book series: NATO Science Series ((NAII,volume 26))

Abstract

The Earth’s magnetic field is by and large a steady dipole, but its history has been punctuated by intermittent excursions and reversals. This is at least superficially similar to the behaviour of differential equations containing structurally stable heteroclinic cycles. We present a model of the geodynamo that is based on the symmetries of velocity fields in a rotating spherical shell, and that contains such a cycle. Patterns of excursions and reversals that resemble the geomagnetic record can be obtained by introducing small symmetry-breaking terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merrill, R.L., McElhinny, M.W. & McFadden, P.L. (1996) The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. Academic Press: San Diego.

    Google Scholar 

  2. Gubbins, D. (1999) The distinction between excursions and reversals, Geophys. J. Int. 137 F1–F3

    Article  Google Scholar 

  3. Busse, F.H. (2001) In this volume

    Google Scholar 

  4. Roberts, P.H. (2001) In this volume

    Google Scholar 

  5. Jones, C.A. (2000) Convection-driven geodynamo models, Phil Trans. R. Soc. Lond. A 358 873–897

    Article  ADS  MATH  Google Scholar 

  6. Bullard, E.C. (1955) The stability of a homopolar dynamo, Proc. Camb. Phil. Soc. 51 744–760

    Article  ADS  Google Scholar 

  7. Rikitake, T. (1958) Oscillations in a system of disk dynamos, Proc. Camb. Phil. Soc. 54 89–105

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Allan, D.W. (1962) On the behaviour of systems of coupled dynamos, Proc. Camb. Phil. Soc. 58 671–693

    Article  MathSciNet  ADS  Google Scholar 

  9. Robbins, K.A. (1975) Disk Dynamos and Magnetic Reversal (PhD thesis, M.I.T.)

    Google Scholar 

  10. Chui, A.Y.K. & Moffatt, H.K. (1993) A thermally driven disc dynamo. In Solar and Planetary Dynamos (ed. M.R.E. Proctor, P.C. Matthews & A.M. Rucklidge), pp. 51–58. Cambridge University Press: Cambridge

    Google Scholar 

  11. Hide, R., Skeldon, A.C. & Acheson, D.J. (1996) A study of two novel self-exciting single-disk homopolar dynamos: theory, Proc. R. Soc. Lond. A 452 1369–1395

    Google Scholar 

  12. Moroz, I.M., Hide, R. & Soward, A.M. (1998) On self-exciting coupled Faraday disk homopolar dynamos driving series motors, Physica 117D 128–144

    MathSciNet  ADS  Google Scholar 

  13. Oprea, I., Chossat, P. & Armbruster, D. (1997) Simulating the kinematic dynamo forced by heteroclinic convective velocity fields, Theor. Comput. Fluid Dyn. 9 293–309

    Article  MATH  Google Scholar 

  14. Chossat, P., Guyard, F. Lauterbach, R (1999) Generalized heteroclinic cycles in spherically invariant systems and their perturbations, J. Nonlinear Sci. 9 479–524

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Busse, F.H. (1970) Thermal instabilities in rapidly rotating systems, J. Fluid Mech. 44 441–460

    Article  ADS  MATH  Google Scholar 

  16. Jackson, A., Jonkers, A.R.T. & Walker, M.R. (2000) Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond. A 358 957–990

    Article  ADS  Google Scholar 

  17. Kumar, S. & Roberts, P.H. (1975) A three-dimensional kinematic dynamo, Proc. R. Soc. Lond. A 344 235–258

    Article  ADS  Google Scholar 

  18. Gubbins, D., Barber, C.N., Gibbons, S. & Love, J.J. (2000) Kinematic dynamo action in a sphere. II. Symmetry selection, Proc. R. Soc. Lond. A 456 1669–1683

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Proctor, M.R.E. (1977) The role of mean circulation in parity selection by planetary magnetic fields, Geophys. Astrophys. Fluid Dynamics 8 311–324

    Article  ADS  MATH  Google Scholar 

  20. Krupa, M. & Melbourne, I. (1995) Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergod. Th. & Dynam. Sys. 15 121–147

    Article  MathSciNet  MATH  Google Scholar 

  21. Melbourne, I. (1989) Intermittency as a codimension three phenomenon, J. Dyn. Diff. Eqns. 1 347–367

    Article  MathSciNet  MATH  Google Scholar 

  22. Melbourne, L, Proctor, M.R.E. & Rucklidge, A.M. (2001) In preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Melbourne, I., Proctor, M., Rucklidge, A. (2001). A Heteroclinic Model of Geodynamo Reversals and Excursions. In: Chossat, P., Ambruster, D., Oprea, I. (eds) Dynamo and Dynamics, a Mathematical Challenge. NATO Science Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0788-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0788-7_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7070-3

  • Online ISBN: 978-94-010-0788-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics