Skip to main content

Diffraction By Molecular Helices

The range of morphologies of sp2 carbon and the basic theory of diffraction by an atomic helix

  • Chapter
Carbon Filaments and Nanotubes: Common Origins, Differing Applications?

Part of the book series: NATO Science Series ((NSSE,volume 372))

In its most abundant natural form, pure carbon crystallizes in the graphitic structure which consists of planar honeycomb lattices of sp2-bonded atoms called graphene, loosely piled up at a regular distance a = 0.34 nm (see Figure la on the next page).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) Terrones M., Hsu W.K., Hare J.P., Kroto H.W., Terrones H. and Walton D.R.M. (1996), Graphitic structures: from planar to spheres, toroids and helices, Phil. Trans. R. Soc. Lond. A. 354, 2025–2054.

    Article  CAS  Google Scholar 

  2. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F. and Smalley R.E. (1985) Nature 318, 162–163; Iijima S. (1987), The C60-Carbon Cluster has been revealed, J. Phys. Chem. 91, 3466–3467.

    Google Scholar 

  3. Iijima. S. (1991), Helical microtubules of graphitic carbon, Nature 354, 56–58;

    Google Scholar 

  4. Iijima S. and Ichihashi T. (1993), Single-shell carbon nanotubes of 1 nm diameter, Nature 363, 603–605;

    Article  CAS  Google Scholar 

  5. Bethune D.S., Kiang C.H., de Vries M.S., Gorman G., Savoy, R., Vasquez J. and Beyers R. (1993), Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–606.

    Google Scholar 

  6. Amelinckx S., Zhang X.B., Bernaerts D., Zhang X.F., Ivanov V. and B.Nagy J. (1994), A formation mechanism for catalytically grown helix shaped graphite nanotubes, Science 265, 635–636.

    Article  CAS  Google Scholar 

  7. Zhang X.B., Zhang X.F., Bernaerts D., Van Tendeloo G., Amelinckx S., Van Landuyt J., Ivanov V., B.Nagy J., Lambin Ph. and Lucas A.A. (1994), The texture of catalytically grown coil-shaped carbon nanotubes, Europhys. Letters 27, 141–146

    CAS  Google Scholar 

  8. Amelinckx S., Lucas A.A. and Lambin Ph. (1999), Electron diffraction and microscopy of nanotubes, Rep. Prog. Phys. 62, 1–54.

    Google Scholar 

  9. Amelinckx S., Luyten W., Van Tendeloo G. and Van Landuyt J. (1992), Conically, helically wound, graphite whiskers: a limiting member of the fullerenes, J. Cryst. Growth 121, 543–558.

    Article  CAS  Google Scholar 

  10. Liu J., Dai H., Hafner J.H., Colbert D.T., Smalley R.E., Tans S.J. and Dekker C. (1997), Fullerene “crop circles”, Nature 385, 780–781.

    Article  CAS  Google Scholar 

  11. Plumber nightmare morphology (undiscovered).

    Google Scholar 

  12. Krishan A., Dujardin E., Treacy M.M.J., Hugdahl J., Lynum S. and Ebbesen T.W. (1997), Graphitic cones and the nucleation of curved carbon surfaces, Nature 388, 451–54.

    Article  Google Scholar 

  13. Arfken B. and Weber H. (1995), Mathematical Methods for Physicists, Academic Press, New York.

    Google Scholar 

  14. Doyle P.A. and Turner P.S. (1968), Relativistic Hartree-Fock X-ray and electron scattering factors, Acta Cryst. A24, 390–397.

    Google Scholar 

  15. Polanyi M. (1921), The X-ray fiber diagram, Z. Phys. 7, 149–180.

    Article  CAS  Google Scholar 

  16. Cochran W., Crick F.H.C. and Vand V. (1952), The structure of synthetic polypeptides. I. The transform of atoms on a helix, Acta Cryst. 5, 581–585.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lucas, A.A., Lambin, P., Moreau, F. (2001). Diffraction By Molecular Helices. In: Biró, L.P., Bernardo, C.A., Tibbetts, G.G., Lambin, P. (eds) Carbon Filaments and Nanotubes: Common Origins, Differing Applications?. NATO Science Series, vol 372. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0777-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0777-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6908-0

  • Online ISBN: 978-94-010-0777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics