Skip to main content

On the Interplay Between T c -Inhomogeneities at Long Length Scales and Thermal Fluctuations Around the Average Superconducting Transition in Cuprates

  • Chapter
High-Tc Superconductors and Related Materials

Part of the book series: NATO Science Series ((ASHT,volume 86))

Abstract

ABSTRACT. We review at an introductory and pedagogical level some aspects of the interplay between inhomogeneities at long length scales (at length scales much bigger than any characteristic length for superconductivity, in particular than the superconducting coherence length amplitude, (T), even at temperatures relatively close to Tc) and the intrinsic fluctuations of Cooper pairs above Tc in high temperature cuprate superconductors (HTSC). These inhomogeneities at long length scales do not directly affect the thermal fluctuations, but they may deeply affect, together (and entangled!) with the thermal fluctuations, the measured behaviour of any observable around the transition. The emphasis is centered on the role played by the presence of T c inhomogeneities, as those associated with oxygen content inhomogeneities, at these long length scales and uniformly or non-uniformly distributed in the samples, on the in-plane transport properties in inhomogeneous HTSC crystals. For completeness, we will also summarize some results on this interplay when various types of inhomogeneities (i.e., structural and stoichiometric, uniformly and non-uniformly distributed) may be simultaneously present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Kosterlitz and D. Thouless, in Progress in Low Temperature Physics Edited by D.F. Brewer (North-Holland, Amsterdam, 1978)Vol. VIIB, p. 271.

    Google Scholar 

  2. J.G. Bednorz and K.A. Müller,Z. Phys. B Condensed Matter 64 189 (1986).

    Article  ADS  Google Scholar 

  3. For a recent review of the thermal fluctuation effects of Cooper pairs above Tc in HTSC, see, e.g., F. Vidal and M.V. Ramallo, in The Gap Symmetry and Fluctuations in High Temperature Superconductors, Edited by J. Bok, G. Deutscher, D. Pavuna and A. Wolf (Plenum, London 1998), p. 477.

    Google Scholar 

  4. See, e.g., D. Shoenberg,Superconductivity(Cambridge University Press, Cambridge, 1962), p. 75. See also, L.R. Testardi Phys. Lett.35A 33 (1971).

    Google Scholar 

  5. See, e.g., B. Abeles, R.W. Cohen and G.W. Walker, Phys. Rev. Lett. 17 632 (1996); B. Abeles, R.W. Cohen and W.R. Stowell, Phys. Rev. Lett. 18 902 (1967).

    Article  ADS  Google Scholar 

  6. J. Maza and F. Vidal,Phys. Rev. B 43 10560 (1991).

    Article  ADS  Google Scholar 

  7. A. Pomar, M.V. Ramallo, J. Mosqueira, C. Torrón and F. Vidal, Phys. Rev. B 54 7470 (1996); J. Low Temp. Phys. 105 675 (1996).

    Google Scholar 

  8. See, e.g., R. Landauer, in Electrical Transport and Optical Properties of Inhomogeneous Media, Edited by J.C. Garland and D.B. Tanner (AIP, New York, 1978), p. 2.

    Google Scholar 

  9. M.V. Ramallo, A. Pomar and F. Vidal,Phys. Rev. B 54 4341 (1996).

    Article  ADS  Google Scholar 

  10. S. Ullah and A.T. Dorsey,Phys. Rev. B44 262 (1991)

    Article  ADS  Google Scholar 

  11. See, e.g., C.M. Fu, W. Boon, Y.S. Wang, V.V. Moshchalkov and Y. Bruynseraede, Physica C 200 17 (1992); V. Calzona, M.R. Cimberle, C. Ferdeghini, G. Grasso, D.V. Livanov, D. Marre, M. Putti, A.S. Siri, G. Balestrino and E. Milani, Solid State Commun.87 397 (1993); A.K. Prandam, S.B. Ray, P.C. Chaddah, C. Chen, and B.M. Wanklyn, Phys. Rev. B50 7180 (1994).

    Google Scholar 

  12. For earlier references on the anomalous peak structure of the specific heat around Tc in HTSC see, e.g., A. Junod, inPhysical Properties of High Temperature Superconductors IIed. D.M. Ginsberg (World Scientific, Singapore, 1990), p. 13.

    Google Scholar 

  13. See, e.g., C.H. Chen, in Physical Properties of High Temperature Superconductors II, ed. D.M. Ginsberg (World Scientific, Singapore, 1990), p. 261.

    Google Scholar 

  14. H. Claus, U. Gebhard, G. Linker, K. Rohberg. S. Riedling, J. Franz, T. Ishida, A. Erb, G. Müller-Vogt and H. Wühl,Physica C200271 (1992).

    Article  ADS  Google Scholar 

  15. E. Janod, A. Junod, T. Graf, K.W. Wang, G. Triscone and J. Muller,Physica B194–1961939 (1994).

    Article  ADS  Google Scholar 

  16. Y. Nakawaza, J. Takeya and M. Ishikawa,Physica C 22571 (1994).

    Article  ADS  Google Scholar 

  17. J.W. Loran, J.R. Cooper and K.A. Mirza,Supercond. Sci. Technol. 4S391 (1991).

    Article  ADS  Google Scholar 

  18. R. Menegotto Costa, A.R. Jurelo, P. Rodrigues Jr., P. Pureur, J. Schaf, J.V. Kunzler, L. Ghuvelder, J.A. Campá and I. Rasines,Physica C251175 (1995).

    Article  ADS  Google Scholar 

  19. J.A. Friedmann, J.P. Rice, J. Giapintzakis and D.M. Ginsberg,Phys. Rev. B 39 4258 (1989).

    Article  ADS  Google Scholar 

  20. A. Pomar, S.R. Currás, J.A. Veira, and F. Vidal,Phys. Rev. B538245 (1996).

    Article  ADS  Google Scholar 

  21. A. Pomar, A. Diaz, M.V. Ramallo, C. Torrón, J.A. Veira and F. Vidal,Physica C218257 (1993).

    Article  ADS  Google Scholar 

  22. See, e.g., J.P. Rice and D.M. Ginsberg, Phys. Rev. B461206 (1992), and references therein.

    Google Scholar 

  23. Such a link was established by the authors of Refs. 6 and 7 just by analogy with that proposed by some authors for the heavy fermion superconductor UPt3. See, e.g., R.A. Fisher, S. Kim, B.F. Woodfield, N.E. Phillips, L. Taifeller, K. Hasselbach, J. Flouquet, A.L. Giogi and J.L. Smith, Phys. Rev. Lett.621411 (1989).

    Google Scholar 

  24. In contrast, the absence of indirect order parameter fluctuation effects on p(T) above T c may provide some indications about the wave pairing state in the HTSC. For the theory see, e.g., S.K. Yip, Phys. Rev. B41 2012 (1990); J. Low Temp. Phys.81129 (1990). The first experimental evidence of the absence of indirect OPF effects on the paraconductivity in HTSC, suggesting then unconventional (non 1-s0) pair breaking wave pairing in these superconductors, was presented by J.A. Veira and F. Vidal, Phys. Rev. B428748 (1990). For more recent developments on this subject see, e.g., A. Pomar. M.V. Ramallo, J. Maza and F. Vidal, Physica C225287 (1994).

    Google Scholar 

  25. J. Mosqueira, A. Pomar, A. Diaz, J.A. Veira, and F. Vidal, Physica C22534 (1994); J. Mosqueira, A. Pomar, J.A. Veira, J. Maza and F. Vidal, J. App. Phys.761943 (1994).

    Google Scholar 

  26. J. Mosqueira, J.A. Veira and F. Vidal, Physica C229301 (1994); J. Mosqueira, J.A. Veira, J. Maza, O. Cabeza and F. Vidal, Physica C2531(1995).

    Google Scholar 

  27. Th. Siebold, C. Carballeira, J. Mosqueira, M.V. Ramallo and F. Vidal, Physica C282–2871181 (1997); J. Mosqueira, Th. Siebold, A. Pomar, A. Diaz, J.A. Veira, J. Maza and F. Vidal, Cryogenics37563 (1997). A negative voltage has also been observed by other groups in other HTSC. See, e.g., S. Aukkaravittayapum et al. Physica C270231 (1996); Y. Nishi et al. J. Matter Sci. Lett.3523 (1989).

    Google Scholar 

  28. J. Mosqueira, S.R. Currás, C. Carballeira, M.V. Ramallo, Th. Siebold, C. Torrón, J. Campá, I. Rasines and F. Vidal,Supercond. Sci. Techol. 11, 1(1998).

    Article  Google Scholar 

  29. See, e. g., P. Lindqvist, A. Nordstrom and Ö. Rapp, Phys. Rev. Lett.64 2941 (1990); P. Santhanam, C.C. Chi, S.J. Wind, M.J. Brady and J.J. Buchignano, ibid.66 2254 (1991); E. Spahn and K. Keck, Solid State Commun.78 69 (1991); Y. K. Kwong, K. Lin, P.J. Hakonen, M.S. Isaacson and J.M. Parpia, Phys. Rev.B 44462 (1991); A. Nordström and O. Rapp, Phys. Rev. B 4512577 (1992); H. Vloeberghs, V. V. Moshchalkov, C. Van Haesendonk, R. Jonckheere and Y. Bruynseraede, Phys. Rev. Lett.69 1268 (1992); A. W. Kleinsasser and A. Kastalsky, Phys. Rev. B47 8361 (1993); S.G. Romanov, A.V. Fokin and K.Kh. Babamuratov, JETP Lett. 58824 (1993); J.J. Kim, J. Kim, H.J. Shin, H.J. Lee, S. Lee, K.W. Park and E. Lee, J. Phys. Condens. Matter6 7055 (1994); V. V. Moshchalkov, L. Gielen, G. Neuttiens, C. van Haesendonk and Y. Bruynseraede, Phys. Rev. B49 15412 (1994); M. Park, M.S. Isaacson and J.M. Parpia, Phys. Rev. Lett.753740 (1995); C. Strunk, V. Bruyndoncx, C. Van Haesendonk, V.V. Moshchalkov, Y. Bruynseraede, B. Burk, C.J. Chien and V. Chandrasekhar, Phys. Rev. B5311332 (1996); K. Yu. Arutyunov, Phys. Rev. B5312304 (1996); M. Park, M.S. Isaacson and J.M. Parpia, Phys. Rev. B559067 (1997); B. Burk, C.-J. Chien, V. Chandrasekhar, C. Strunk, V. Bruyndoncx, C. Van Haesendonck, V.V. Moshchalkov, and Y. Bruynseraede, J. Appl. Phys.831549 (1998); C. Strunk, V. Bruyndoncx, C. Van Haesendonck, V.V. Moshchalkov, Y. Bruynseraede, C.-J. Chien, B. Burk, and V. Chandrasekhar, Phys. Rev. B5710854 (1998). As stressed in the main text, many of the magnetoresistivity peak effects around Tc described in these papers and attributed by these authors to sophisticated intrinsic mechanisms, may be easily explained in terms of Tc inhomogeneities non-uniformly distributed in the samples. This last explanation was discarded by some of these authors due to the erroneous belief that these Tc inhomogeneities do not affect the magnetoresistivity measured with in-line electrical arrangements (see Ref. 25; see also the note in Ref. 30).

    Google Scholar 

  30. R. Vaglio, C. Attanasio, L. Maritato and A. Ruosi, Phys. Rev. B4715302 (1993). In that paper it was concluded that the p (T) peaks observed near Tc in some low temperature superconductors by using a Van der Paw electrical arrangement (with the electrical leads in the sample corners) could be due to the presence in the samples of Tc inhomogeneities. However, it was erroneously suggested in that paper that in the case of an in-line electrical arrangement the Tc inhomogeneities could not produce a p (T) peak. This last type of measurements were analyzed for the first time by Mosqueira and coworkers in Ref. 25.

    Google Scholar 

  31. C. Attanasio, L. Maritato and R. Vaglio in Tunneling Phenomena in High and Low T c Superconductors, edited by A. de Chiara and M. Russo (World Scientific, Singapore, 1993).

    Google Scholar 

  32. A. Gerber, T. Grenet, M. Cyrot and B. Beille, Phys. Rev. Lett.653201 (1990); L. Fabrega, M.A. Crusellas, J. Fontcuberta, X. Obradors, S. Piñol, C.J. van der Beck, P.H. Kes, T. Grenet and J. Beille, Physica C185–189 1913 (1991); M. A. Crusellas, J. Fontcuberta and S. Piñol, Phys. Rev. B4614089 (1992); M.L. Trawick, S.M. Ammirata, C.D. Keener, S.E. Hebboul and J.C. Garland, J. of Low Temp. Phys.1051267 (1996).

    Google Scholar 

  33. S. Rubin, T. Schimpfke, B. Weitzel, C. Vossloh and H. Micklitz,Ann. Physik1 492 (1992).

    Article  ADS  Google Scholar 

  34. A.K. Pradham, S.J. Hazell, J.W. Hodby, C. Chen, A.J.S. Chowdury and B.M. Wanklyn,Solid State Commun.88723 (1993).

    Article  ADS  Google Scholar 

  35. M.A. Crusellas, J. Fontcuberta and S. Piñol,Physica C226311 (1994).

    Article  ADS  Google Scholar 

  36. H.J. Trodahl and A. Mawdsley, Phys. Rev. B368881 (1987); W.N. Kang, K.C. Cho, Y.M. Kim and M.Y. Choi, Phys. Rev. B392763 (1989); S. Yan, T. Chen, H. Zhang, J. Peng, Z. Shen, C. Wei, Q. Wen, K. Wu, L. Tong and H. Zhang, Modern Phys. Lett. B21005 (1988); M.A. Howson, M.B. Salamon, T.A. Friedmann, S.E. Inderhees, J.P. Rice, D.M. Ginsberg and K.M. Ghiron, J. Phys.: Condens Matter1465 (1989); M.A. Howson, M.B. Salamon, T.A. Friedmann, J. P. Rice and D. Ginsberg, Phys. Rev. B41300 (1990); A.J. Lowe, S. Regan and M.A. Howson, Physica B165–1661369 (1990); Phys. Rev. B449757 (1991); J. Phys.: Condens. Matter48843 (1992); N.V. Zavaritskii, A.V. Samoilov and A.A. Yurgens, JETP Lett.55127 (1992); Y.N. Xiang, O.G. Shevchenko, and A.S. Panfilov, Sov. J. Low Temp. Phys.18916 (1992).

    Google Scholar 

  37. A.J. Lowe, S. Regan and M.A. Howson,Phys. Rev. B 47, 15321 (1993); M.A. Howson, ibid. 15324 (1993); A.A.Varlamov and D.L. Livanov, Soy. Phys. JETP 71, 325 (1990); A.V. Rapoport, Sov. Phys. Solid State33309 (1991).

    Google Scholar 

  38. For a more recent theoretical analyses of the thermal fluctuation effects on S(T) around Tc in HTSC see, A.A. Varlamov, G. Balestrino, E. Milani and D.V. Livanov (to be published).

    Google Scholar 

  39. Let us stress, however, that in this case (which corresponds to a typical non-uniformly distributed inhomogeneity) the behaviour of the calculated (th)ábdoes not depend on the number of meshes of the network, provided that the proportion and location of the different resistances is kept unchanged. This contrasts with the case of uniformly distributed Tc inhomogeneities for which with a small number of meshes it is not possible to represent adequately the inhomogeneity distribution. In this case, a small number of meshes could lead to the appearance of important spurious longitudinal and transversal voltages, which are just an artifact of an inadequate simulation. For instance, the calculations of the longitudinal and transversal voltages in superconductors with uniformly distributed inhomogeneities presented by R. Griessen and coworkers in Physica C235–2401371 (1994) may be affected by these spurious effects.

    Google Scholar 

  40. A negative Hall effect in a LTSC has been first observed by H. van Beelen et al., Physica36241 (1967), and by C.H. Weijsenfeld, Phys. Lett.28A362 (1968); a negative Ettinshausen effect in a LTSC has been first observed by F. Vidal, Phys. Rev B81982 (1973).

    Google Scholar 

  41. See, e.g., S.J. Hagen, A.W. Smith, M. Rajeswari, J.L. Peng, Z.Y. Li, R.L. Greene, S.N. Mao, X.X. Xi, S. Bhattacharya, Q. Li, and C.J. Lobb,Phys. Rev. B471064 (1993).

    Article  ADS  Google Scholar 

  42. O. Cabeza, A. Pomar, A. Díaz, C. Torrón, J.A. Veira, J. Maza and F. Vidal, Phys. Rev. B475332 (1993); A.J. López, J. Maza, Y.P. Yadava, F. Vidal, F. García Alvarado, E. Morán and M.A. Sellaris-Rodriguez, Supercond. Sci. Technol.4S292 (1991).

    Google Scholar 

  43. K. Maki, J. Low. Temp. Phys.14419 (1974); Phys. Rev. B431252 (1991).

    Article  ADS  Google Scholar 

  44. J.A. Veira and F. Vidal, Physica C159468 (1989); C. Torrón, O. Cabeza, A. Díaz, J. Maza, A. Pomar, J.A. Veira and F. Vidal, J. of Alloys and Compounds195627 (1993).

    Google Scholar 

  45. O. Cabeza, G. Domarco, J.A. Veira, A. Pomar, C. Torrón, A. Díaz, J. Maza and F. Vidal, J. Alloys and Compounds195623 (1993); O. Cabeza, J. Maza, Y.P. Yadava, J.A. Veira, F. Vidal, M.T. Cascais, C. Cascales and I. Rasines, in Properties and Applications of Perovskite-type Oxides, Ed. L.G. Tejuca and J.L. Fierro (Marcel Dekker Inc. N.Y. 1992), p. 101.

    Google Scholar 

  46. See, e.g., A. Diaz, A. Pomar, G. Domarco, J. Maza and F. Vidal, App. Phys. Lett.631684 (1993); Physica B194–1961933 (1994); A. Díaz, A. Pomar, G. Domarco, C. Torrón, J. Maza and F. Vidal, Physica C215105 (1993); J. App. Phys. 77, 765 (1995).

    Google Scholar 

  47. K. Kadowaki, Physica C185–1892249 (1991).

    Google Scholar 

  48. P.H. Kes, C.J. van der Beck, M.P. Maley, M.E. McHenry, D.A. Huse, M.J.V. Menken and A.A. Menovsky,Phys. Rev. Lett.672383 (1991).

    Article  ADS  Google Scholar 

  49. Z. Telanovic, L. Xing, L.N. Bulaevskii, Q. Li, and M. Suenaga,Phys. Rev. Lett.693563 (1992).

    Article  ADS  Google Scholar 

  50. Q. Li, M. Suenaga, T. Hikata and K. Sato, Phys. Rev. B465857 (1992); Q. Li, K. Shibutani, M. Suenaga, I. Shigaki, R. Ogawa, ibid.489877 (1993); Q. Li, M. Suenaga, L.N. Bulaevskii, T. Hikata, K. Sato, ibid.4813865 (1993); Q. Li, M. Suenaga, G.D. Gu, N. Koshizuka, ibid.506489 (1994); J.R. Thompson, J.G. Ossandon, D.K. Christen, B.C. Chakoumakos, Yang Ren Sun, M. Paranthaman and J. Brynestad, ibid.4814031 (1993); Z. J. Huang, Y.Y. Xue, R.L. Meng, X.D. Qiu, Z.D. Hao, and C.W. Chu, Physica C228211 (1994); N. Kobayashi, K. Egawa, K. Miyoshi, H. Iwasaki, H. Ikeda, and R. Yoshizaki, ibid.219265 (1994); R. Jin, H.R. Ott, and A. Schilling, ibid.228401 (1994); G. Triscone, A.F. Khoder, C. Opagiste, J.-Y. Genoud, T. Graf, E. Janod, T. Tsukamoto, M. Couach, A. Junod, and J. Muller, ibid.224263 (1994); A. Wahl, A. Maignan, C. Martin, V. Hardy, J. Provost, and Ch. Simon, Phys. Rev. B519123 (1995); Y.Y. Xue, Y. Cao, Q. Xiong, F. Chen, and C.W. Chu, ibid.532815 (1996); G. Villard, D. Pelloquin, A. Maignan, and A. Wahl, Physica C27811 (1997); Q. Li, M. Suenaga, T. Kimura, and K. Kishio, Phys. Rev. B47 11384 (1993); B. Janossy, L. Fruchter. I.A. Campbell, J. Sanchez, I. Tanaka, and H. Kojima, Solid State Commun.89433 (1994); J.-Y. Genoud, G. Triscone, A. Junod, T. Tsukamoto, and J. Muller, Physica C242143 (1995); A. Junod, J.Y. Genoud, G. Triscone, and T. Schneider, Physica C294115 (1998).

    Google Scholar 

  51. See, e.g., L.N. Bulaevskii, M. Ledvig and V.G. Kogan, Phys. Rev. Lett.683773 (1992); A.E. Koshelev, Phys. Rev. B50506 (1994).

    Google Scholar 

  52. J. Mosqueira, J.A. Campá, A. Maignan, I. Rasines, A. Revcolevschi, C. Torrón, J.A. Veira, F. Vidal, Europhys. Lett.42461 (1998); F. Vidal, C. Torrón, M.V. Ramallo, J. Mosqueira, Superconducting and Related Oxides: Physics and Nanoengineering III, Ed. D. Pavuna and I. Bozovic, (SPIE Publ., Bellingham, USA), p. 32.

    Google Scholar 

  53. J. Mosqueira, M.V. Ramallo, A. Revcolevschi, C. Torrón, F. Vidal, Phys. Rev. B59(Feb. 1999)

    Google Scholar 

  54. C.J. Lobb,Phys. Rev. B363930 (1987).

    Article  ADS  Google Scholar 

  55. See, e.g., P.C. Hohenberg and B.I. Halperin,Rev. Mod. Phys.49435 (1977).

    Article  ADS  Google Scholar 

  56. F. Vidal, J.A. Veira, J. Maza, F. García-Alvarado, E. Morán, and M.A. Alano, J. Phys. C: Solid State Phys.21L599–L606 (1988); J.A. Veira, J. Maza, F. Vidal, Phys. Lett. A131310 (1988); F. Vidal, J.A. Veira, J. Maza, J.J. Ponte, J. Amador, C. Cascales, M.T. Casais, I. Rasines, Physica C156165 (1988).

    Google Scholar 

  57. F. Vidal, J.A. Veira, J. Maza, J.J. Ponte, F. García-Alvarado, E. Morán, J. Amador, C. Cascales, A. Castro, M.T. Casais and I. Rasines,Physica C156807 (1988).

    Article  ADS  Google Scholar 

  58. . Let us stress that, obviously, the opposite procedure used since many years by some workers, which consist in the estimation of T, by imposing a critical exponent in an almost arbitrary (in extent and location!) temperature region does not overcome at all these difficulties: If p(T) is smoothly rounded by uniformly distributed TT -inhomogeneities, it will be always possible to find successive and more or less extended c-regions where the critical exponents take different values (to within almost zero and -3 or -4) which decrease when approaching the apparentT c .

    Google Scholar 

  59. In spite of the earlier wamings, published in Refs. 26, 56 and 57, an appreciable number of papers were published since then by different groups (and still new papers are being published at present) which intend to conclude quantitatively on the paraconductivity full critical behaviour by just analyzing the temperature behaviour of the resistivity measured in different HTSC samples probably appreciably affected by uniformly(and maybe also by non uniformly)distributed Tcinhomogeneities. See, e.g., Menegotto Costa, P. Pureur, L. Ghivelder, J.A. Campá, and I. Rasines, Phys. Rev. B 5610836 (1997); S.H. Han, Yu. Eltsev and O. Rapp, Phys. Rev.B 577510 (1998). See also the note in Ref. 58.

    Google Scholar 

  60. A. Pomar, A. Díaz, M.V. Ramallo, C. Torrón, J.A. Veira, and F. Vidal,Physica C218257 (1993).

    Article  ADS  Google Scholar 

  61. C. Torrón, A. Díaz, A. Pomar, J.A. Veira and F. Vidal, Phys. Rev. B4913143 (1994); M.V. Ramallo, C. Torrón and F. Vidal, Physica C23097 (1994).

    Google Scholar 

  62. W. Holm, Yu. Eltsev and O. Rapp, Phys. Rev. B5311992 (1995); J.T. Kim, N. Goldenfel, J. Giapintzakis and D. Ginsberg, Phys. Rev. B56118 (1997).

    Google Scholar 

  63. See, e.g., M.V. Ramallo and F. Vidal, Phys. Rev.59(Feb. 1999).

    Google Scholar 

  64. For an analysis of the influence of the TT -inhomogeneities on the heat capacity measured very close to T, in Y-123 crystals, see, F. Shanfy, J. Giapintzakis, D.M. Ginsberg, D.J. van Harlingen, Physica C161555 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidal, F., Veira, J.A., Maza, J., Carballeira, J.M., Carballeira, C. (2001). On the Interplay Between T c -Inhomogeneities at Long Length Scales and Thermal Fluctuations Around the Average Superconducting Transition in Cuprates. In: Drechsler, SL., Mishonov, T. (eds) High-Tc Superconductors and Related Materials. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0758-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0758-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6873-1

  • Online ISBN: 978-94-010-0758-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics