Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 563))

  • 908 Accesses

Abstract

We explore the possibility of a coherent random laser based upon a suitably modified conventional laser cavity. Particularly promising is a nonparaxial variety of an open resonator based upon ideal spherical mirrors. Phase locking allows spatial redistribution of the intracavity field into localized closed-loop ray paths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.V. Ambartsumyan, N.G. Basov, P.G. Kryukov, and V.S. Letokhov, “Non-resonant feedback in lasers”, in: Progress in Quantum Electronics, edited by J.H. Sanders and K.W.H. Stevens, Pergmanon Press, Oxford, 1970, Vol. 1, p. 107.

    Google Scholar 

  2. M. Kempe, G.A. Berger, and A.Z. Genack, “Stimulated emission from amplifying random media”, in: Handbook of Optical Properties, Vol. 2, R.E. Hummel and P. Wissman, editors, 1997, CRC Press, Boca Raton (LA), p. 301.

    Google Scholar 

  3. D.S. Wiersma and A. Lagendijk, Light diffusion with gain and random lasers, Phys. Rev. E 54, 4256 (1996).

    Article  ADS  Google Scholar 

  4. D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a disordered medium, Nature 390, 671 (1997).

    Article  ADS  Google Scholar 

  5. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, and R.P.H. Chang, Random laser action in semiconductor powder, Phys. Rev. Lett. 82, 2278 (1999).

    Article  ADS  Google Scholar 

  6. H. Cao, J.Y. Xu, E.W. Seelig, and R.P.H. Chang, Microlaser made of disordered media, Appl. Phys. Lett. 76, 2997 (2000).

    Article  ADS  Google Scholar 

  7. H.J. Stöc kmann, Quantum Chaos, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  8. C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A.D. Stone, J. Faist, D.L. Sivco, and A.Y. Cho, High-power directional emission from microlasers with chaotic resonators, Science 280, 1556 (1998).

    Article  ADS  Google Scholar 

  9. M. Patra, H. Schomerus, and C.W.J. Beenakker, Quantum-limited linewidth of a chaotic laser cavity, Phys. Rev. A 61, 023810 (2000).

    Article  ADS  Google Scholar 

  10. K. Frahm, H. Schomerus, M. Patra, and C.W.J. Beenakker, Large Petermann factor in chaotic cavities with many scattering channels, Europhys. Lett. 49, 48 (2000).

    Article  ADS  Google Scholar 

  11. C.W.J. Beenakker, “Photon statistics of a random laser”, in: Diffuse Waves in Complex Media, edited by J.P. Fouque, NATO ASI Series, Kluwer, Dordrecht, 1999.

    Google Scholar 

  12. A.E. Siegman, Lasers, University Science Books, Mill Valley (CA), 1986.

    Google Scholar 

  13. M.A. van Eijkelenborg, Å.M. Lindberg, M.S. Thijssen, and J.P. Woerdman, Resonance of quantum noise in an unstable cavity laser, Phys. Rev. Lett. 77, 4314 (1996).

    Article  ADS  Google Scholar 

  14. I.A. Ramsay and J.J. Degnan, A ray analysis of optical resonators formed by two spherical mirrors, Appl. Opt. 9, 385 (1970).

    Article  ADS  Google Scholar 

  15. D. Herriott, H. Kogelnik, and R. Kompfner, Off-axis paths in spherical mirror interferometers, Appl. Opt. 3,523 (1964).

    Article  ADS  Google Scholar 

  16. J.P. Woerdman and R.J.C. Spreeuw, “Optical level crossings”, in: Analogies in Optics and Micro Electronics, edited by W. van Haeringen and D. Lenstra, Kluwer, Dordrecht, 1990, p. 135.

    Chapter  Google Scholar 

  17. L.A. Westling, M.G. Raymer, and J.J. Snyder, Single-shot spectral measurements and mode correlations in a multimode pulsed dye laser, J. Opt. Soc. Am. B 1, 150 (1984).

    ADS  Google Scholar 

  18. C. Huygens, Oeuvres Complètes de Christiaan Huygens, Vol. 5, Société Hollandaise des Sciences, La Haye, Martinus Nijhoff, 1893, p. 243.

    Google Scholar 

  19. H.A. Haus, H. Statz, and I.W. Smith, Frequency locking of modes in a ring laser, IEEE J. Quantum Electronics 21, 78 (1985).

    Article  ADS  Google Scholar 

  20. R.J.C. Spreeuw, R. Centeno Neelen, N.J. van Druten, E.R. Eliel, and J.P. Woerdman, Mode-coupling in a He-Ne ring laser with backscattering, Phys. Rev. A42, 4315 (1990).

    Article  ADS  Google Scholar 

  21. H.W. Kogelnik, E.P. Ippen, A. Dienes, and C.V. Shank, Astigmatically compensated cavities for cw dye lasers, IEEE J. Quantum Electronics 8, 373 (1972).

    Article  ADS  Google Scholar 

  22. A.A. Chabanov, M. Stoytchev, and A.Z. Genack, Statistical signatures of photon localization, Nature 404, 850 (2000).

    Article  ADS  Google Scholar 

  23. M.V. Berry and C. Upstill, “Catastrophe optics: Morphologies of caustics and their diffraction patterns”, in: Progress in Optics, Vol. 18, edited by E. Wolf, North Holland, Amsterdam, 1980, p. 257.

    Google Scholar 

  24. D. Marcuse, Light Transmission Optics, Krieger Publishing Company, Malabar (FA), 1989.

    Google Scholar 

  25. F. Haake, Quantum Signatures of Chaos, Springer, Berlin (1991).

    MATH  Google Scholar 

  26. J. Dingjan, M.P. van Exter, and J.P. Woerdman, Geometric modes in a single-frequency Nd:YVO4 laser, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Woerdman, J.P., Dingjan, J., Van Exter, M.P. (2001). Cavity Approach Towards a Coherent Random Laser. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics