Skip to main content

Abstract

The dissipation mechanisms of contact force microscopy on solid surfaces are related to the fast motion during the slip process. Different degrees of freedom can be excited, such as phonons or electronic excitations. The dissipation mechanisms of dynamic force microscopy (DFM) were recently investigated due to the improvement in large amplitude DFM, also called dissipation force microscopy. Experimental methods to determine damping with DFM will be discussed. When an electrical field is applied between probing tip and sample, damping is observed, which depends on voltage. This type of damping is related to mirror charges, which move in the sample and/or tip because of the motion of the cantilever. When the contact potential is compensated, this long-range part is minimized. Under these conditions, only short-range damping can be measured, which appears at distances of about lnm and increases exponentially with closer separation. Recent models of this type of damping show, that there might be a relationship to the local phonon density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, T.R., Grütter, P., Home, D., and Rugar, D. (1991) “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity” J. Appl Phys. 69, 668–674.

    Article  Google Scholar 

  • Bammerlin, M. et al. (1998) “True Atomic Resolution on the Surface of an Insulator via Ultrahigh Vacuum Dynamic Force Microscopy”, Probe Microscopy 1, 3–7.

    Google Scholar 

  • Barwich, V., Bammerlin, M., Bennewitz, R., Guggisberg, M., Loppacher, C., Pfeiffer, O., Meyer, E., Güntherodt, H.-J., Salvetat, J.P., Bonard, J.M., and Forro, L. (2000)“Carbon nanotubes as tips in non-contact SFM”, Appl. Surf. Sci. 157, 269–273.

    Article  CAS  Google Scholar 

  • Cleveland, J., Anczykowski, B., Schmid, A., and Elings, V. (1998)“Energy dissipation in tapping-mode atomic force microscopy”, Appl. Phys. Lett. 72, 2613–2615.

    Article  CAS  Google Scholar 

  • Denk, W., and Pohl, D.W. (1991)“Local electrical dissipation imaged by scanning force microscopy”, Appl Phys. Lett. 59, 2171–2174.

    Article  CAS  Google Scholar 

  • Dürig, U. (1999a) “Conservative and Dissipative Interactions in Dynamic Force Microscopy” Surf. Interface Anal. 27, 467–473.

    Article  Google Scholar 

  • Dürig, U. (1999b) “Relations between interaction force and frequency shift in larg-amplitude dynamic force microscopy” Appl. Phys. Lett. 75, 433–435.

    Article  Google Scholar 

  • Dürig, U. (2000a)“Extracting interaction forces and complementary observables in dynamic probe microscopy” Appl. Phys. Lett. 76, 1203–1205.

    Article  Google Scholar 

  • Dürig, U. (2000b)“Interaction sensing in dynamic force microscopy”, New Journal of Physics 2, 5.1–5.12.

    Google Scholar 

  • Erlandsson, R., Olsson, L., and Martensson, P. (1996) “Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7×7”, Phys. Rev. B 54, R8309–R8312.

    Article  CAS  Google Scholar 

  • Gauthier, M., and Tsukada, M. (1999)“Theory of noncontact dissipation force microscopy”, Phys. Rev. B 60, 11716–11722.

    Article  CAS  Google Scholar 

  • Gauthier, M., et al. (2000) 3rd Workshop of Non-contact AFM, Hamburg, to appear in Appl. Phys. A.

    Google Scholar 

  • Giessibl, F.J. (1995) “Atomic Resolution of Silicon(111)7×7 by Atomic Force Microscopy Through Repulsive and Attractive Forces”, Science 267, 68–72.

    Article  CAS  Google Scholar 

  • Giessibl, F.J. (1997)“Forces and frequency shifts in atomic-resolution dynamicforce microscopy”, Phys. Rev. B 56, 16010–16015.

    Article  CAS  Google Scholar 

  • Gotsmann, B., Seidel, C, Anczykowski, B., and Fuchs, H. (1999)“Conservative and dissipative tip-sample interaction forces probed with dynamic AFM”, Phys. Rev. B 60, 11051–11061.

    Article  CAS  Google Scholar 

  • Israelachvili, J.N. (1985) Intermolecular and Surface Forces, Academic Press, London.

    Google Scholar 

  • Grütter, P., Liu, Y., LeBlanc, P. and Dürig, U. (1997)“Magnetic dissipation force microscopy”, Appl. Phys. Lett. 71,5279–5282.

    Article  Google Scholar 

  • Loppacher, Ch., Bammerlin, M., Battiston, F.M., Guggisberg, M., Müller, D., Hidber, H.R., Lüthi, R., Meyer, E., Güntherodt, H.-J. (1998)“Fast Digital Electronics for Application in Dynamic Force Microscopy Using High-Q Cantilevers”, Appl. Phys. A 66, 215–220.

    Article  Google Scholar 

  • Loppacher, Ch., Bammerlin, M., Guggisberg, M., Battiston, F.M., Bennewitz, R., Rast, S., Baratoff, A., Meyer, E., Güntherodt, H.-J. (1999)“Phase Variation Experiments in Non-Contact Dynamic Force Microscopy Using Phase Locked Loop Techniques”, Appl. Surf. Sci. 140, 287–291.

    Article  CAS  Google Scholar 

  • Loppacher, Ch., Bammerlin, M., Guggisberg, M., Schär, S., Bennewitz, R., Baratoff, A., Meyer, E., Güntherodt, H.-J. (2000a) “Dynamic force microscopy of copper surfaces-Atomic resolution and distance dependence of tip-sample interaction and tunneling current”, submitted to Phys. Rev. B.

    Google Scholar 

  • Loppacher, C., Bennewitz, R., Pfeiffer, O., Guggisberg, M., Bammerlin, M., Schär, S., Barwich, V., Baratoff, A and Meyer, E. (2000b) “Experimental Aspects of Dissipation Force Microscopy”, to appear in Phys. Rev. B.

    Google Scholar 

  • Martin, Y., Williams, C.C., and Wickramasinghe, H.K. (1989) “Atomic force microscope-force mapping and profiling on a sub 100-Å scale”, J. Appl. Phys. 61, 4723.

    Article  Google Scholar 

  • McClelland, G.M., Erlandsson, R., and Chiang, S. (1987) in Review of Progress in Quantitative Non-Destructrive Evaluation, edited byD.O. Thompson and D. E. Chimenti (Plenum, New York), Vol. 6B, p. 1307–1312.

    Google Scholar 

  • Nonnenmacher, M., Greschner, J., Wolter, O., and Kassing, R. (1991)“Scannning force microscopy with micromachined silicon devices”, J. Vac. Sci. Technol. B 9 1358–1362.

    Article  CAS  Google Scholar 

  • Pfeiffer, O., Loppacher, C, Wattinger, C, Bammerlin, M., Gysin, U., Guggisberg, M., Rast, S., Bennewitz, R., Meyer, E., and Güntherodt, H.-J. (2000)“Using higher flexural modes in non-contact force microscopy”, Appl. Surf. Sci. 157, 337–342.

    Article  CAS  Google Scholar 

  • Sasaki, N. et al. (2000), 3rd Workshop of Non-contact AFM, Hamburg, to appear in Appl. Phys. A.

    Google Scholar 

  • Sugawara, Y., Ohta, M., Ueyama, H. and Morita, S. (1995)“Defect motion on an InP(llO) surface observed with non-contact force microscopy” Science 270, 1646.

    Article  CAS  Google Scholar 

  • Stowe, T., Kenny, T., Thomson, D., Rugar, D. (1999)“Silicon dopant imaging by dissipation force microscopy” Appl. Phys. Lett. 75, 2785.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meyer, E. et al. (2001). Dissipation Mechanisms Studied by Dynamic Force Microscopies. In: Bhushan, B. (eds) Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. NATO Science Series, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0736-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0736-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6837-3

  • Online ISBN: 978-94-010-0736-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics