Skip to main content

Finite Amplitude Transverse Waves in Special Incompressible Viscoelastic Solids

  • Chapter
Advances in Continuum Mechanics and Thermodynamics of Material Behavior

Abstract

We consider the propagation of finite amplitude plane transverse waves in a class of homogeneous isotropic incompressible viscoelastic solids. It is assumed that the Cauchy stress may be written as the sum of an elastic part and a dissipative viscoelastic part. The elastic part is of the form of the stress corresponding to a Mooney-Rivlin material, whereas the dissipative part is a linear combination of A 1, A 21 and A 2, where A 1, A 2 are the first and second Rivlin-Ericksen tensors. The body is first subject to a homogeneous static deformation. It is seen that two finite amplitude transverse plane waves may propagate in every direction in the deformed body. It is also seen that a finite amplitude circularly polarized wave may propagate along either n + or n , where n +, n are the normals to the planes of the central circular section of the ellipsoid x · B −1x =1. Here B is the left Cauchy-Green stra in tensor corresponding to the finite static homogeneous deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.S. Antman, Nonlinear Problems in Elasticity. Springer, New York (1995).

    Google Scholar 

  2. M.F. Beatty, Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues — with examples. Appl. Mech. Rev. 40 (1987) 1699–1733. See also Introduction to Nonlinear Elasticity in: M.M. Carroll and M.A. Hayes (eds), Nonlinear Effects in Fluids and Solids. Plenum, New York (1996) pp. 16–112.

    Article  Google Scholar 

  3. M.F. Beatty and Z. Zhou, Universal motions for a class of viscoelastic materials of differential type. Continuum Mech. Thermodyn. 3 (1991) 169–171.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ph. Boulanger and M. Hayes, Finite amplitude waves in deformed Mooney-Rivlin materials. Quart. J. Mech. Appl. Math. 45 (1992) 575–593.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ph. Boulanger and M. Hayes, Bivectors and Waves in Mechanics and Optics. Chapman & Hall, London (1993).

    MATH  Google Scholar 

  6. Ph. Boulanger, M. Hayes and C. Trimarco, Finite amplitude waves in deformed Hadamard materials. Geophys. J. Internat. 118 (1994) 447–458.

    Article  Google Scholar 

  7. Ph. Boulanger and M. Hayes, Further properties of finite amplitude waves in deformed Mooney-Rivlin materials. Quart. J. Mech. Appl Math. 48 (1995) 427–464.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ph. Boulanger and M. Hayes, Wave propagation in sheared rubber. Acta Mech. 22 (1997) 75–87.

    Article  MathSciNet  Google Scholar 

  9. M.M. Carroll, Controllable deformations in incompressible simple elastic materials. Internat. J. Engrg. Sci. 5 (1967) 515–525.

    Article  Google Scholar 

  10. M.M. Carroll, Unsteady homothermal motions of fluids and isotropic solids. Arch. Rational Mech. Anal. 53 (1974) 218.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.M. Carroll, Plane circular shearing of incompressible fluids and solids. Quart. J. Mech. Appl. Math. 30 (1976) 223–234.

    Article  Google Scholar 

  12. B.D. Coleman and W. Noll, Foundations of linear viscoelasticity. Rev. Modern Phys. 33 (1961) 239–249.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Engelbrecht, Qualitative aspects of nonlinear wave motion. In: J.L. Wegner and F.R. Norwood (eds), Nonlinear Waves in Solids. Appl. Mech. Rev. 46 (1993) 509–518.

    Google Scholar 

  14. R.L. Fosdick, Dynamically possible motions of isotropic incompressible simple materials. Arch. Rational Mech. Anal 29 (1968) 272–288.

    Article  MathSciNet  MATH  Google Scholar 

  15. R.L. Fosdick and J.-H. Yu, Thermodynamics, stability and nonlinear oscillations of viscoelastic solids-I. Internat. J. Nonlinear Mech. 31 (1996) 495–516.

    Article  MathSciNet  MATH  Google Scholar 

  16. R.L. Fosdick and J.-H. Yu, Thermodynamics, stability and non-linear oscillations of viscoelastic solids-II. Int. J. Nonlinear Mech. 33 (1998) 165–188.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.L. Fosdick, Y. Ketema and J.-H. Yu, Vibration damping through the use of materials with memory. Internat. J. Solids Struct. 35 (1998) 403–420.

    Article  MATH  Google Scholar 

  18. J.M. Kelly, Earthquake-resistant Design with Rubber. Springer, London (1993).

    Book  Google Scholar 

  19. J.L. Leblanc, Dynamic strain methods to probe the morphology of uncured rubber compounds. Kautschuk Gummi Kunststoffe 49 (1996) 258–266.

    Google Scholar 

  20. K.N. Morman, An adaptation of finite linear viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure. Rheol. Acta 27 (1988) 3–14.

    Article  MATH  Google Scholar 

  21. K.N. Morman and Y.T. Pan, Application of finite element analysis in the design of automotive elastomeric components. Rubber Chem. Technol. 61 (1988) 503–533.

    Article  Google Scholar 

  22. J.W. Nunziato, E.K. Walsh, F.W. Schuler and L.M. Barker, Wave propagation in nonlinear viscoelastic media. In: Flügge’s Handbuch der Physik., VIa/4. Springer, Berlin (1974).

    Google Scholar 

  23. K. Rasolofosan, B. Zinszner and P.A. Johnson, Propagation des ondes elasticques dans le materiaux non linéaires. Revue de l’Institut Français du Pétrole 52 (1997) 585–608.

    Google Scholar 

  24. M. Renardy, W.J. Hrusa and A.J. Nohel, Mathematical problems of viscoelasticity. Longman, New York (1987).

    Google Scholar 

  25. M.B. Rubin, P. Rosenau and O. Gottlieb, Continuum model of dispersion caused by an inherent material characteristic length. J. Appl. Phys. 77 (1995) 4054–4063.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated with esteem to Professor Roger Fosdick.

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hayes, M.A., Saccomandi, G. (2000). Finite Amplitude Transverse Waves in Special Incompressible Viscoelastic Solids. In: Carlson, D.E., Chen, YC. (eds) Advances in Continuum Mechanics and Thermodynamics of Material Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0728-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0728-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3837-9

  • Online ISBN: 978-94-010-0728-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics