Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha)

Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 155)


Hypoxic conditions are common in many coastal environments such as Chesapeake Bay. While medusae appear to be quite tolerant of low dissolved oxygen (DO) concentrations, the effects of hypoxia on the benthic polyp stages are unknown. Chrysaora quinquecirrha (DeSor) polyps, and were subjected to 5 DO treatments (air-saturated [control], 3.5, 2.5, 1.5 and 0.5 mg 1-1) in the laboratory. Polyp survival and development were documented over 24 d. Virtually no mortality occurred in any treatment during the first 5 d. Total polyp mortality after 24 d was 59.3% at the lowest DO concentration, whereas <3% mortality was observed in the air-saturated treatment. Formation of stolons and strobilae occurred in all treatments, however, the proportions of polyps undergoing stolonation and strobilation were significantly greater in all DO concentrations above 0.5 mg 1-1. Polyp encystment was not observed in any treatment over the course of the 24 d experiment. These results indicate that polyps can survive and asexually propagate even during prolonged exposure to hypoxic conditions.


asexual reproduction Chesapeake Bay hypoxia jellyfish survival polyp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baird, D. & R. E. Ulanowicz, 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 59:329–364.Google Scholar
  2. Benoviċ, A, D. Justić & A. Bender, 1987. Enigmatic changes in the hydromedusan fauna of the northern Adriatic Sea. Nature 326:597–600.Google Scholar
  3. Breitburg, D. L., 1990. Near-shore hypoxia in the Chesapeake Bay: patterns and relationships among physical factors. Est. coast. shelf Sci. 30:593–609.Google Scholar
  4. Breitburg, D. L., 1994. Behavioral responses of fish larvae to low oxygen risk in a stratified water column. Mar. Biol. 120:615–625.Google Scholar
  5. Breitburg, D. L., T. Loher, C. A. Pacey & A. Gerstein, 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr. 67:489–507.Google Scholar
  6. Breitburg, D. L., N. Steinburg, S. DeBeau, C. Cooksey & E. D. Houde, 1994. Effects of low oxygen on predation on estuarine fish larvae. Mar. Ecol. Prog. Ser. 104:235–246.Google Scholar
  7. Calder, D. R., 1974. Strobilation of the sea nettle, Chrysaora quinquecirrha, under field conditions. Biol. Bull. 146:326–334.Google Scholar
  8. Calder, D. R., 1982. Life history of the cannonball jellyfish, Stomolophus meleagris L. Agassiz, 1860 (Scyphozoa, Rhizostomida). Biol. Bull. 162:149–162.Google Scholar
  9. Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13:486–491Google Scholar
  10. Cargo, D. G. & G. E. Rabenold, 1980. Observations on the sexual reproductive activities of the sessile stages of the sea nettle Chrysaora quinquecirrha (Scyphozoa). Estuaries 3:20–27.Google Scholar
  11. Cargo, D. G. & L. P. Schultz, 1966. Notes on the biology of the sea nettle, Chrysaora quinquecirrha, in Chesapeake Bay. Chesapeake Sci. 7:95–100.Google Scholar
  12. Cargo, D. G. & L. P. Schultz, 1967. Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Sci. 8:209–220.Google Scholar
  13. Childress, J. J. & B. A Seibel, 1998. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. exp. Biol. 201:1223–1232.Google Scholar
  14. Gröndahl, F., 1988. A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Mar. Biol. 97:541–550.Google Scholar
  15. Gröndahl, F. & L. Hernroth, 1987. Release and growth of Cyanea capillata (L.) ephyrae in the Gullmar Fjord, western Sweden. J. exp. mar. Biol. Ecol. 106:91–101.Google Scholar
  16. Jonas, R., 1992. Microbial processes, organic matter and oxygen demand in the water column. In Smith, D. E., M. Leffler & G. Mackiernan (eds), Oxygen Dynamics in the Chesapeake Bay: a Synthesis of Recent Research. Maryland Sea Grant, College Park:113–148.Google Scholar
  17. Keister, J. E., E. D. Houde & D. L. Breitburg, 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Mar. Ecol. Prog. Ser. 205:43–59Google Scholar
  18. Lin, A. L. & R. L. Zubkoff, 1977. Enzymes associated with carbohydrate metabolism of scyphistomae of Aurelia aurita and Chrysaora quinquecirrha (Scyphozoa: Semaeostomeae). Comp. Biochem. Physiol. 57B:303–308.Google Scholar
  19. Malone, T. C., 1992. Effects of water column processes on dissolved oxygen, nutrients, phytoplankton and zooplankton. In Smith, D.E., M. Leffler & G. Mackiernan (eds), Oxygen Dynamics in the Chesapeake Bay: a Synthesis of Recent Research. Maryland Sea Grant, College Park:61–112.Google Scholar
  20. Purcell, J. E., 1992. Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Ches. apeake Bay. Mar. Ecol. Prog. Ser. 87:65–76.Google Scholar
  21. Purcell, J. E., J. R. White & M. R. Roman, 1994a. Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeake Bay. Limnol. Oceanogr. 39:263–278.Google Scholar
  22. Purcell, J. E., D. A. Nemazie, S. E. Dorsey, E. D. Houde & J. C. Gamble, 1994b. Predation mortality of bay anchovy Anchoa mitchilli eggs and larvae due to scyphomedusae and ctenophores in Chesapeake Bay. Mar. Ecol. Prog. Ser. 114:47–58.Google Scholar
  23. Purcell, J. E., J. R. White, D. A. Nemazie & D. A Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Mar. Ecol. Prog. Ser. 180:187–196.Google Scholar
  24. Purcell, J. E., D. L. Breitburg, M. B. Decker, W. M. Graham, M. J. Youngbluth & K. A. Raskoff, 2001. Pelagic cnidarians and ctenophores in low dissolved oxygen enviroments: a review. In Rabalais, N. N. & R. E. Turner (eds), Coastal Hypoxia: Consequences for Living Resources and Ecosystems American Geophysical Union, Coastal & Estuar. Stud. 58:77–100.Google Scholar
  25. Roman, M. R., A L. Gauzens, W. K. Rhinehart & J. R. White, 1993. Effects of low oxygen waters on Chesapeake Bay zooplankton. Limnol. Oceanogr. 38:1603–1614.Google Scholar
  26. Sanford, L. P., K. G. Sellner & D. L. Breitburg, 1990. Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay. J. mar. Res. 48:567–590.Google Scholar
  27. Spangenberg, D. B., 1968. Recent studies of strobilation in jellyfish. Oceanogr. mar. Biol. Ann. Rev. 6:231–247.Google Scholar
  28. Taft, J. L., W. R. Taylor, E. O. Hartwig & R. Loftus, 1980. Seasonal oxygen depletion in Chesapeake Bay. Estuaries 4:242–247.Google Scholar
  29. Thuesen, E. V. & J. J. Childress, 1994. Oxygen consumption rates and metabolic enzyme activities of oceanic Californian medusae in relation to body size and habitat depth. Biol. Bull. 187:84–98.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Horn Point LaboratoryUniversity of Maryland Center for Environmental ScienceCambridgeUSA
  2. 2.Shannon Point Marine CenterAnacortesUSA
  3. 3.Dept. of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA

Personalised recommendations