Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 155))

Abstract

Jellyfish have been exploited commercially by Chinese as an important food for more than a thousand years. Semidried jellyfish represent a multi-million dollar seafood business in Asia. Traditional processing methods involve a multi-phase processing procedure using a mixture of salt (NaC1) and alum (A1K[SO4]2 · 12 H2O) to reduce the water content, decrease the pH, and firm the texture. Processed jellyfish have a special crunchy and crispy texture. They are then desalted in water before preparing for consumption. Interest in utilizing Stomolophus meleagris L. Agassiz, cannonball jellyfish, from the U. S. as food has increased recently because of high consumer demand in Asia. Desalted ready-to-use (RTU) cannonball jellyfish consists of approximately 95% water and 4–5% protein, which provides a very low caloric value. Cannonball jellyfish collagen has shown a suppressing effect on antigeninduced arthritis in laboratory rats. With the great abundance of cannonball jellyfish in the U. S. coastal waters, turning this jellyfish into value-added products could have tremendous environmental and economicbenefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barzansky, B., H. M. Lenhoff & H. Bode, 1975. Hydra mesoglea: similarity of its amino acid and neutral sugar composition to that of vertebrate basal lamina. Comp. Biochem. Physiol. 50B:419–424.

    Google Scholar 

  • Burke, W. D., 1976. Biology and distribution of the macrocoelenterates of Mississippi Sound and adjacent waters. Gulf Res. Rep. 5:17–28.

    Google Scholar 

  • Calder, D. R. & B. S. Hester, 1978. Phylum Cnidaria. In Zingmark, R. G. (ed.). An Annotated Checklist of the Biota of the Coastal Zone of South Carolina. Univ. South Carolina Press, Columbia:87–93.

    Google Scholar 

  • Firth, F. E., 1969. The Encyclopedia of Marine Resources. Van Nostrand Reinhold Co., New York:324–325.

    Google Scholar 

  • Hooper, S. N. & R. G. Ackman, 1973. Distribution of trans-6-hexadecenoic acid, 7-methyl-7-hexadecenoic acid and common fatty acids in lipids of the ocean sunfish Mola mola. Lipids 8:509–516.

    Google Scholar 

  • Hsieh, Y-H. P. & J. Rudloe, 1994. Potential of utilizing jellyfish as food in Western countries. Trends Food Sci. Tech. 5:225–229.

    Google Scholar 

  • Hsieh, Y-H. P., F-M. Leong & K.W. Barnes, 1996. Inorganic constituents in fresh and processed cannonball jellyfish (Stomolophus meleagris). J. Agric. Food Chern. 44:3117–3119.

    Google Scholar 

  • Huang, Y. W., 1988. Cannonball jellyfish, Stomolophus meleagris as a food resource. J. Food Sci. 53:341–343.

    Google Scholar 

  • Joseph, J. D., 1979. Lipid composition of marine and estuarine invertebrates. Porifera and Cnidaria. Prog. Lipid Res. 18:1–30.

    Google Scholar 

  • Kimura, S., S. Miura & Y. H. Park, 1983. Collagen as the major edible component of jellyfish (Stomolophus nomurai). J. Food Sci. 48:1758–1760.

    Google Scholar 

  • Kraeuter, J. N. & E. M. Setzler, 1975. The seasonal cycle of Scyphozoa and Cubozoa in Georgia estuaries. Bull. mar. Sci. 25:66–74.

    Google Scholar 

  • Kramp, P. L., 1961. Synopsis of the medusae of the world. J. mar. bioI. Ass. U. K. 40:1–469.

    Google Scholar 

  • Larson, R. J., 1976. Marine flora and fauna of the northeastern United States. Cnidaria: Scyphozoa. NOAA Tech. Rep. NMFS Circ. 397:17.

    Google Scholar 

  • Leong, F-M., 1995. Processing, chemical composition, and quality evaluation of cannonball jellyfish. M.S. Thesis. Auburn University, Alabama, U.S.A.

    Google Scholar 

  • Mayer, A. G., 1910. Medusae of the World. Volume 3. ‘The Scyphomedusae’. Carnegie Institution of Washington, Washington, DC:711 pp.

    Google Scholar 

  • Meinkoth, N. A., 1981. The Audubon Society Field Guide to North American Seashore Creatures. Alfred A. Knopf, New York: 364pp.

    Google Scholar 

  • Morikawa, T., 1984. Jellyfish. FAO INFOFISH Marketing Digest 1:37–39.

    Google Scholar 

  • Omori, M., 1978. Zooplankton fisheries of the world: a review. Mar. Biol. 48:199–205.

    Google Scholar 

  • Omori, M., 1981. Edible jellyfish (Scyphomedusae: Rhizostomeae) in Far East waters. A brief review of the biology and fishery. Bull. Plankton Soc. Japan 28:1–11 (in Japanese).

    Google Scholar 

  • Omori, M. & E. Nakano, 2001. Jellyfish fisheries in southeast Asia. Hydrobiologia 451 (Dev. Hydrobiol. 155):19–26.

    Google Scholar 

  • Rudloe, J., 1992. Jellyfish: A new fishery for the Florida panhandle. A report to the U. S. Department of Commerce Economic Development Administration. EDA Project no. 04–06–03801: 35 pp.

    Google Scholar 

  • Soonthonvipat, V., 1976. Dried jellyfish. In Tieros, K. (ed.), Fisheries Resources and their Management in South-east Asia. Proc. Int’l. Seminar Nov–Dec, 1974. German Foundation for Int‘l. Dev. Bonn:149–151.

    Google Scholar 

  • Subasinghe, S., 1992. Jellyfish processing. INFOFISH Int. 4:63–65.

    Google Scholar 

  • Suelo, L.G. 1986. Utilization of the Australian jellyfish Catostylus sp. as a food product. Ph.D. Thesis. University of New South Wales, Sydney, Australia.

    Google Scholar 

  • Toom, P. M. & D. S. Chan, 1972. Preliminary studies on nematocysts from the jellyfish Stomolophus meleagris. Toxicon 10:605–610.

    Google Scholar 

  • Trentham, D. E., A. S. Townes & A. H. Kang, 1977. Autoimmunity to type II collagen: an experimental model of arthritis. J. expo Med. 146:857–868.

    Google Scholar 

  • Wood, F. D., C. M. Pearson & A. Tanaka, 1969. Capacity of mycobacterial wax D and its subfractions to induce adjuvant arthritis in rats. Int. Arch. Allergy Appl. Immunol. 35:456–467.

    Google Scholar 

  • Wootton, M., K. A. Buckle & D. Martin, 1982. Studies on the preservation of Australian jellyfish (Catostylus spp.). Food Tech. Aust. 34:398–400.

    Google Scholar 

  • Yoshino, S., E. Quattrocchi & H. L. Weiner, 1995. Suppression of antigen-induced arthritis in Lewis rats by oral administration of type II collagen. Arthritis & Rheum. 38:1092–1096.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hsieh, YH.P., Leong, FM., Rudloe, J. (2001). Jellyfish as food. In: Purcell, J.E., Graham, W.M., Dumont, H.J. (eds) Jellyfish Blooms: Ecological and Societal Importance. Developments in Hydrobiology, vol 155. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0722-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0722-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3835-5

  • Online ISBN: 978-94-010-0722-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics