Skip to main content

Application of Noncommutative Differential Geometry on Lattice to Anomaly Analysis in Abelian Lattice Gauge Theory

  • Chapter
Noncommutative Differential Geometry and Its Applications to Physics

Part of the book series: Mathematical Physics Studies ((MPST,volume 23))

  • 423 Accesses

Abstract

The chiral anomaly in lattice abelian gauge theory is investigated by applying noncommutative differential geometry (NCDG). A new kind of double complex and descent equation is proposed on an infinite hypercubic lattice in arbitrary even-dimensional Euclidean space in the framework of NCDG. By using the general solutions of descent equation, we derive the chiral anomaly in Abelian lattice gauge theory. The topological origin of the anomaly is nothing but the Chern classes in NCDG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. B. Nielson and M. Ninomiya, Phys. Lett. B105 (1981) 219.

    ADS  Google Scholar 

  2. P. H. Ginsparg and K.G. Wilson, Phys. Rev. D25 (1982) 2649.

    ADS  Google Scholar 

  3. H. Neuberger, Phys. Lett. B417 (1998) 141; B427 (1998) 353.

    MathSciNet  ADS  Google Scholar 

  4. P. Hernández, K. Jansen and M. Lüscher, Nucí. Phys. B552 (1999) 363.

    Article  ADS  Google Scholar 

  5. P. Hasenfratz, Nucl. Phys. (Proc. Suppl.) 63 (1998) 53

    Article  ADS  Google Scholar 

  6. Nucl. Phys. B525 (1998) 401.

    Article  ADS  Google Scholar 

  7. P. Hasenfratz, V. Laliena and F. Niedermayer, Phys. Lett. B427 (1998) 125.

    ADS  Google Scholar 

  8. M. Lüscher, Phys. Lett. B428 (1998) 342.

    ADS  Google Scholar 

  9. R. Narayanan, Phys. Rev. D58 (1998) 097501.

    Google Scholar 

  10. F. Niedermayer, Nucl. Phys. (Proc. Suppl.) 73 (1999) 105.

    Article  ADS  MATH  Google Scholar 

  11. K. Fujikawa, Nucl. Phys. B546 (1999) 480, hep-lat/9904007.

    Article  MathSciNet  ADS  Google Scholar 

  12. T. Reisz and H. J. Rothe, Phys. Lett. B455 (1999) 246.

    ADS  Google Scholar 

  13. H. Neuberger, Phys. Rev. D59 (1999) 085006.

    Google Scholar 

  14. Y. Kikukawa and A. Yamada, Phys. Lett. B448 (1999)265

    ADS  Google Scholar 

  15. Nucl. Phys. 547 (1999) 413.

    Article  ADS  Google Scholar 

  16. T. Aoyama and Y. Kikukawa, hep-lat/9905003.

    Google Scholar 

  17. D.H. Adams, hep-lat/9812003.

    Google Scholar 

  18. H. Suzuki, Prog. Theo.Phys. 102 (1999)1147

    Article  ADS  Google Scholar 

  19. 102 (1999)141.

    Article  ADS  Google Scholar 

  20. T.-W. Chiu, Phys. Lett. B445 (1999) 371, hep-lat/9906007.

    ADS  Google Scholar 

  21. T.-W. Chiu and T.-H. Hsieh, hep-lat/9901011.

    Google Scholar 

  22. M. Lüscher, Nucl. Phys. B538 (1999) 515.

    Article  ADS  Google Scholar 

  23. M. Lüscher, Nucl. Phys. B549 (1999) 295.

    Article  ADS  Google Scholar 

  24. T. Fujiwara, H. Suzuki and K. Wu, Ibaraki University preprint IU-MSTP/35, hep-lat/9906015.

    Google Scholar 

  25. T. Fujiwara, H. Suzuki and K. Wu, Phys. Lett. B463 (1999) 63, hep-lat/9906016.

    MathSciNet  ADS  Google Scholar 

  26. A. Connes, ”Noncommutative Geometry”, Academic Press, New York, 1994

    Google Scholar 

  27. A. Sitarz, J Geom. Phys. 15 (1995) 123

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A. Dimakis and F. Müller-Hoissen, Phys. Lett. B295 (1992) 242

    ADS  Google Scholar 

  29. A. Dimakis, F. Müller-Hoissen and T. Striker, J Phys. A: Math. Gen. 26 (1993) 1927.

    Article  ADS  MATH  Google Scholar 

  30. H. G. Ding, H. Y. Guo, J. M. Li and K. Wu, Z. Phys. C64 (1994) 521

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fujiwara, T., Suzuki, H., Wu, K. (2001). Application of Noncommutative Differential Geometry on Lattice to Anomaly Analysis in Abelian Lattice Gauge Theory. In: Maeda, Y., Moriyoshi, H., Omori, H., Sternheimer, D., Tate, T., Watamura, S. (eds) Noncommutative Differential Geometry and Its Applications to Physics. Mathematical Physics Studies, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0704-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0704-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3829-4

  • Online ISBN: 978-94-010-0704-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics