Intercellular Calcium Signaling in “Non-Excitable” Cells

  • Thierry Tordjmann
  • Caroline Clair
  • Michel Claret
  • Laurent Combettes


Communication is the governing word of our epoch, growth of networks such as the internet or mobile phone are tangible proof of our need to communicate. These human developments follow the normal evolution of life. Indeed, the first life forms were single cells that did not communicate with each other. During evolution, prokaryotic cells, and later eukaryotes, began to associate into multicellular colonies. The key advantages of this “multicellularity” are intercellular cooperation and cellular specialization. Communication between cells is a fundamental requirement for the social behavior of cells, facilitating cooperation between cells of the same specialized group (tissue or organ) and between different cell groups, thereby ensuring the coordination of complex and intricate functions. Cells communicate with each other by several non-exclusive pathways, which may be direct or indirect. Direct communication involves intercellular junctions (known as gap junctions), connecting the cytosols of the adjacent cells and facilitating the transfer of low-molecular weight molecules. Thus, the molecules that act as intracellular messengers (cAMP, InsP3, Ca2+) may also act on other cells, by passing from one cell to another via the gap junctions. Indirect communication involves the emission by certain cells of a biological messenger into the extracellular environment. Embryogenesis, tissue ontogeny, cell growth and regeneration and the coordination of many tissue and cell functions could not occur in the absence of direct or indirect communication between cells.


Calcium Wave Inositol Trisphosphate Junctional Coupling Intracellular Messenger Indirect Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allbritton, N.L., Meyer, T. and Stryer, L., 1992, Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate, Science 258, 1812–1815.PubMedCrossRefGoogle Scholar
  2. Berridge, M.J., 1995, Calcium signalling and cell proliferation, Bioessays 17, 491–500.PubMedCrossRefGoogle Scholar
  3. Berridge, M.J., 1997, Elementary and global aspects of calcium signalling, J. Physiol. 499, 291–306.PubMedGoogle Scholar
  4. Bertuzzi, F., Zacchetti, D., Berra, C., Socci, C., Pozza, G., Pontiroli, A.E. and Grohovaz, F., 1996, Intercellular Ca2+ waves sustain coordinate insulin secretion in pig islets of Langerhans, FEBS Lett. 379, 21–25.PubMedCrossRefGoogle Scholar
  5. Bruzzone, R., White, T.W. and Paul, D.L., 1996, Connections with connexins: The molecular basis of direct intercellular signaling, Eur. J. Biochem. 238, 1–27.PubMedCrossRefGoogle Scholar
  6. Carter, T.D., Chen, X.Y., Carlile, G., Kalapothakis, E., Ogden, D. and Evans, W H., 1996, Porcine aortic endothelial gap junctions: Identification and permeation by caged InsP3, J. Cell Sci. 109, 1765–1773.PubMedGoogle Scholar
  7. Charles, A.C., Naus, C.C., Zhu, D., Kidder, G.M., Dirksen, E.R. and Sanderson, M.J., 1992, Intercellular calcium signaling via gap junctions in glioma cells, J. Cell Biol. 118, 195–201.PubMedCrossRefGoogle Scholar
  8. Charles, A., 1998, Intercellular calcium waves in glia, Glia 24, 39–49.PubMedCrossRefGoogle Scholar
  9. Churchill, G. and Louis, C., 1998, Roles of Ca2+, inositol trisphosphate and cyclic ADP-ribose in mediating intercellular Ca2+ signaling in sheep lens cells, J. Cell Sci. 111, 1217–1225.PubMedGoogle Scholar
  10. Combettes, L., Tran, D., Tordjmann, T., Laurent, M., Berthon, B. and Claret, M., 1994, Ca2+— mobilizing hormones induce sequentially ordered Ca2+ signals in multicellular systems of rat hepatocytes, Biochem. J. 304, 585–594.PubMedGoogle Scholar
  11. Dani, J.W., Chernjavsky, A. and Smith, S.J., 1992, Neuronal activity triggers calcium waves in hippocampal astrocyte networks, Neuron 8, 429–440.PubMedCrossRefGoogle Scholar
  12. Domenighetti, A.A., Beny, J.L., Chabaud, F. and Frieden, M., 1998, An intercellular regenerative calcium wave in porcine coronary artery endothelial cells in primary culture, J. Physiol. (Lond.) 513, 103–116.CrossRefGoogle Scholar
  13. Dupont, G., Tordjmann, T., Clair, C., Swillens, S., Claret, M. and Combettes, L., 2000, Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes, FASEB J. 14, 279–289.PubMedGoogle Scholar
  14. Enkvist, M.O.K., and McCarthy, K.D., 1992, Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves, J. Neurochem. 59, 519–526.PubMedCrossRefGoogle Scholar
  15. Enomoto, K., Furuya, K., Yamagishi, S., Oka, T. and Maeno, T., 1994, The increase in the intracellular Ca2+ concentration induced by mechanical stimulation is propagated via release of pyrophosphorylated nucleotides in mammary epithelial cells, Pflügers Arch. 427, 533–542.PubMedCrossRefGoogle Scholar
  16. Giaume, C. and Venance, L., 1998, Intercellular calcium signaling and gap junctional communication in astrocytes, Glia 24, 50–64.PubMedCrossRefGoogle Scholar
  17. Gilland, E., Miller, A.L., Karplus, E., Baker, R. and Webb, S.E., 1999, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96, 157–161.PubMedCrossRefGoogle Scholar
  18. Hardingham, G.E. and Bading, H., 1999, Calcium as a versatile second messenger in the control of gene expression, Microsc. Res. Tech. 46, 348–355.PubMedCrossRefGoogle Scholar
  19. Hempel, C.M., Vincent, P., Adams, S.R., Tsien, R.Y. and Seiverston, A.I., 1996, Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuit, Nature 384, 166–169.PubMedCrossRefGoogle Scholar
  20. Himmel, H.M., Whorton, A.R. and Strauss, H.C., 1993, Intracellular calcium, currents, and stimulus-response coupling in endothelial cells, Hypertension 21, 112–127.PubMedCrossRefGoogle Scholar
  21. Hirata, K., Nathanson, M.H. and Sears, M.L., 1998, Novel paracrine signaling mechanism in the ocular ciliary epithelium, Proc. Natl Acad. Sci. USA 95, 8381–8386.PubMedCrossRefGoogle Scholar
  22. Lindqvist, S.M., Sharp, P., Johnson, I., Satoh, Y. and Williams, M., 1998, Acetylcholine-induced calcium signaling along the rat colonic crypt axis, Gastroenterology 115, 1131–1143.PubMedCrossRefGoogle Scholar
  23. Lowenstein, W.R., 1985, Regulation of cell-to-cell communication by phosphorylation, Biochem. Soc. Symp. 50, 43–58.PubMedGoogle Scholar
  24. Miyazaki, S., 1995, Inositol trisphosphate receptor-mediated spatiotemporal calcium signalling, Curr. Opin. Cell Biol. 7, 190–196.PubMedCrossRefGoogle Scholar
  25. Moitoso De Vargas, L., Sobolewski, J., Siegel, R. and Moss, G.L., 1997, Individual β cells within the intact islet differentially respond to glucose, J. Biol. Chem. 272, 26573–26577.CrossRefGoogle Scholar
  26. Motoyama, K., Karl, I.E., Flye, M.W., Osborne, D.F. and Hotchkiss, R.S., 1999, Effect of Ca2+ agonists in the perfused liver: Determination via laser scanning confocal microscopy, Am. J. Physiol. 276, R575–R585.PubMedGoogle Scholar
  27. Nathanson, M.H. and Burgstahler, A.D., 1992, Coordination of hormone-induced calcium signals in isolated rat hepatocyte couplets — Demonstration with confocal microscopy, Mol. Biol. Cell. 3, 113–121.PubMedGoogle Scholar
  28. Nathanson, M.H., Burgstahler, A.D., Mennone, A., Fallon, M.B., Gonzalez, C.B. and Saez, J.C., 1995, Ca2+ waves are organized among hepatocytes in the intact organ, Am. J. Physiol. 32, G167–G171.Google Scholar
  29. Nelles, E., Butzler, C., Jung, D., Temme, A., Gabriel, H.D., Dahl, U., Traub, O., Stumpel, F., Jungermann, K., Zielasek, J., Toyka, K.V., Dermietzel, R. and Willecke, K., 1996, Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice, Proc. Natl. Acad. Sci. USA 93, 9565–9570.PubMedCrossRefGoogle Scholar
  30. Newman, E.A. and Zahs, K.R., 1997, Calcium waves in retinal glial cells, Science 275, 844–847.PubMedCrossRefGoogle Scholar
  31. Osipchuk, Y. and Cahalan, M., 1992, Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells, Nature 359, 241–244.PubMedCrossRefGoogle Scholar
  32. Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S. and Haydon, P.G., 1994, Glutamate-mediated astrocyte-neuron signalling, Nature 369, 744–747.PubMedCrossRefGoogle Scholar
  33. Robb-Gaspers, L.D. and Thomas, A.P., 1995, Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver, J. Biol. Chem. 270, 8102–8107.PubMedCrossRefGoogle Scholar
  34. Saez, J.C., Connor, J.A., Spray, D.C. and Bennett, M.V.L., 1989, Hepatocyte gap junctions are permeable to the 2nd messenger, inositol 1,4,5-trisphosphate, and to calcium ions, Proc. Natl. Acad. Sci. USA 86, 2708–2712.PubMedCrossRefGoogle Scholar
  35. Sanderson, M.J., 1995, Intercellular calcium waves mediated by inositol trisphosphate, Ciba Found Symp. 188, 175–189.PubMedGoogle Scholar
  36. Sanderson, M.J., Charles, A.C. and Dirksen, E.R., 1990, Mechanical stimulation and inter-cellular communication increases intracellular Ca2+ in epithelial cells, Cell. Regul 1, 585–596.PubMedGoogle Scholar
  37. Sanderson, M.J., Charles, A.C., Boitano, S. and Dirksen, E.R., 1994, Mechanisms and functions of intercellular calcium signaling, Mol. Cell. Endocrinol. 98, 173–187.PubMedCrossRefGoogle Scholar
  38. Schlosser, S.F., Burgstahler, A.D. and Nathanson, M.H., 1996, Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides, Proc. Natl Acad. Sci. USA 93, 9948–9953.PubMedCrossRefGoogle Scholar
  39. Sneyd, J., Wilkins, M., Strahonja, A. and Sanderson, M.J., 1998, Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-trisphosphate, Biophys. Chem. 72, 101–109.PubMedCrossRefGoogle Scholar
  40. Stauffer, P.L., Zhao, H., Luby-Phelps, K., Moss, R.L., Star, R.A. and Muallem, S., 1993, Gap junction communication modulates [Ca2+]i oscillations and enzyme secretion in pancreatic acini, J. Biol. Chem. 15, 268, 19769–19775.Google Scholar
  41. Steinberg, T.H., Civitelli, R., Beyer, E.C., Jorgensen, N.R., Cao, D., Geist, ST. and Lin, G., 1998, Multiple mechanisms for intercellular calcium waves, in Gap Junctions, R. Werner (ed.), IOS Press, pp. 271–275.Google Scholar
  42. Taylor, C.W., 1998, Inositol trisphosphate receptors: Ca2+ modulated intracellular Ca2+ channels, Biochim. Biophys. Acta 1436, 19–33.PubMedCrossRefGoogle Scholar
  43. Thomas, A.P., Bird, G.S.J., Hajnoczky, G., Robb-Gaspers, L.D. and Putney, J.W., 1996, Spatial and temporal aspects of cellular calcium signalling, FASEB J. 10, 1505–1517.PubMedGoogle Scholar
  44. Tordjmann, T., Berthon, B., Claret, M. and Combettes, L., 1997, Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: Dual control by gap junction permeability and agonist, EMBO J. 16, 5398–5407.PubMedCrossRefGoogle Scholar
  45. Tordjmann, T., Berthon, B., Jacquemin, E., Clair, C., Stelly, N., Guillon, G., Claret, M. and Combettes, L., 1998, Receptor-oriented intercellular calcium waves evoked by vasopressin in rat hepatocytes, EMBO J. 17, 4695–4703.PubMedCrossRefGoogle Scholar
  46. Toyofuku, T., Yabuki, M., Otsu, K., Kuzuya, T., Hori, M. and Tada, M., 1998, Intercellular calcium signaling via gap junction in connexin-43-transfected cells, J. Biol. Chem. 273, 1519–1528.PubMedCrossRefGoogle Scholar
  47. Woods, N.M., Cuthbertson, K.S. and Cobbold, P.H., 1986. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 329, 719–721.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Thierry Tordjmann
    • 1
  • Caroline Clair
    • 1
  • Michel Claret
    • 1
  • Laurent Combettes
    • 1
  1. 1.U442, UPSINSERMOrsayFrance

Personalised recommendations