Advertisement

Single Cell Fluorescence Imaging to Investigate Calcium Signaling in Primary Cultured Neurones

  • Jennifer M. Pocock
  • Gareth J. O. Evans

Abstract

This chapter will discuss the use of single cell fluorescence imaging (excluding confocal imaging which is discussed in Nadal and Soria’s chapter in this book) to investigate calcium signalling in primary cultured neurones with particular emphasis on cerebellar granule cell neuronal cultures (CGCs).

Keywords

Calcium Channel Cerebellar Granule Cerebellar Granule Cell Calcium Response Cerebellar Granule Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, F.R., Doherty, P., Collins, D. and Bolsover, S.R., 1999, CAMs and FGF cause a local submembrane calcium signal promoting axon outgrowth without a rise in bulk calcium concentration, Eur. J. Neurosci. 11, 3565–3573.PubMedCrossRefGoogle Scholar
  2. Beani, L., Tomasini, C., Govoni, B.M. and Bianchi, C, 1994, Fluorometric determination of electrically evoked increase in intracellular calcium in cultured cerebellar granule cells, J. Neurosci. Methods 51, 1–7.PubMedCrossRefGoogle Scholar
  3. Castilho, R.F., Hansson, O., Ward, M.W., Budd, S.L. and Nicholls, D.G., 1998, Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells, J. Neurosci. 18, 10277–10286.PubMedGoogle Scholar
  4. Ciardo, A. and Meldolesi, J., 1991, Regulation of intracellular calcium in cerebellar granule neurones: Effect of depolarization and of glutaminergic and cholinergic stimulation, J. Neurochem. 56, 184–191.PubMedCrossRefGoogle Scholar
  5. Connor, J.A., 1993, Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: Intracellular movements and compartmentalization, Cell Calcium 14, 185–200.PubMedCrossRefGoogle Scholar
  6. Courtney, M.J., Lambert, J.J. and Nicholls, D.G., 1990, The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells, J. Neurosci. 10, 3873–3879.PubMedGoogle Scholar
  7. Cousin, M.A., Nicholls, D.G. and Pocock, J.M., 1995, Modulation of ion gradients and glutamate release in cultured cerebellar granule neurons by ouabain, J. Neurochem. 64, 2097–2104.PubMedCrossRefGoogle Scholar
  8. Cousin, M.A., Hurst, H. and Nicholls, D.G., 1997, Presynaptic calcium channels and field-evoked transmitter exocytosis from cultured cerebellar granule cells, Neuroscience 81, 151–161.PubMedCrossRefGoogle Scholar
  9. del Río, E., Nicholls, D.G. and Downes, C.P., 1994, Involvement of calcium influx in muscarinic cholinergic regulation of phospholipase C in cerebellar granule cells, J. Neurochem. 63, 535–543.PubMedGoogle Scholar
  10. del Río, E., Mclaughlin, M., Downes, CP. and Nicholls, D.G., 1999, Differential coupling of G-protein-linked receptors to calcium mobilization through inositol (1,4,5) trisphosphate or ryanodine receptors in cerebellar granule cells in primary culture, Eur. J. Neurosci. 11, 3015–3022.PubMedCrossRefGoogle Scholar
  11. Duchen, M.R., 1992, Contributions of mitochondrial to animal physiology: From homeostatic sensor to calcium signalling and cell death, J. Physiol. 516, 1–17.CrossRefGoogle Scholar
  12. Evans, G.J.O. and Pocock, J.M., 1999, Modulation of neurotransmitter release by dihydropyridine-sensitive calcium channels involves tyrosine phosphorylation, Eur. J.Neurosci. 11,279–292.PubMedCrossRefGoogle Scholar
  13. Forti, L. and Pietrobon, D., 1993, Functional diversity of L-type calcium channels in rat cerebellar neurons, Neuron 10, 437–450.PubMedCrossRefGoogle Scholar
  14. Gruol, D.L., Ryabinin, A.E., Parsons, K.L., Cole, M., Wilson, M.C. and Qiu, Z., 1998, Neonatal alcohol exposure reduces NMDA induced calcium signalling in developing cerebellar granule neurons, Brain Res. 793, 12–20.PubMedCrossRefGoogle Scholar
  15. Grynkiewicz, G., Poenie, M. and Tsien, R.Y., 1985, A new generation of calcium indicators with greatly improved fluorescence properties, J. Biol. Chem. 260, 3440–3450.PubMedGoogle Scholar
  16. Henke, W., Cetinsoy, C., Jung, K. and Loening, S., 1996, Non-hyperbolic calcium calibration curve of fura-2: Implications for the reliability of quantitative calcium measurements, Cell Calcium 20, 287–292.PubMedCrossRefGoogle Scholar
  17. Iorio, K.R., Reinlib, L., Tabakoff, B. and Hoffman, P.L., 1992, Chronic exposure of cerebellar granule cells to ethanol results in increased N-methyl-D-aspartate receptor function, Mol. Pharmacol. 41, 1142–1148.PubMedGoogle Scholar
  18. Keelan, K., Vergun, O. and Duchen, M.R., 1999, Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons, J. Physiol 520, 797–813.PubMedCrossRefGoogle Scholar
  19. Khodorov, B., Pinelis, V., Vergun, O., Storozhevikh, T. and Vinskaya, N., 1996, Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge, FEBS Lett. 397, 230–234.PubMedCrossRefGoogle Scholar
  20. Milani, D., Guidolin, D., Facci, L., Pozzan, T., Buso, M., Leon, A. and Skaper, S.D., 1991, Excitatory Amino Acid-Induced Alterations of Cytoplasmic Free Calcium in Individual Cerebellar Granule Neurons — Role in Neurotoxicity. J. Neurosci. Res. 28, 434–441.PubMedCrossRefGoogle Scholar
  21. Nicholls, D.G. and Budd, S.L., 1998, Mitochondria and neuronal glutamate excitotoxicity, Biochim. Biophys. Acta 1366, 97–112.PubMedCrossRefGoogle Scholar
  22. Ohbayashi, K., Fukura, H., Inoue, H.K., Komiya, Y. and Igarashi, M., 1998, Stimulation of L-type calcium channel in growth cones activates two independent signaling pathways, J. Neurosci. Res. 51, 682–696.PubMedCrossRefGoogle Scholar
  23. Parkinson, N.A., Bolsover, S. and Mason, W., 1998, Nuclear and cytosolic calcium changes in osteoclasts stimulated with ATP and integrin-binding peptide, Cell Calcium 24, 213–221.PubMedCrossRefGoogle Scholar
  24. Pearson, H.A., Sutton, K.G., Scott, R.H. and Dolphin, A.C., 1995, Characterization of calcium channel currents in cultured rat cerebellar granule neurons, J. Physiol. 482, 493–509.PubMedGoogle Scholar
  25. Pocock, J.M., Cousin, M.A. and Nicholls, D.G., 1993, The calcium channel coupled to the exocytosis of L-glutamate from cerebellar granule cells is inhibited by the spider toxin Aga-GI, Neuropharmacology 32, 1185–1194.PubMedCrossRefGoogle Scholar
  26. Pocock, J.M., Cousin, M.A., Parkin, J. and Nicholls, D.G., 1995, Glutamate exocytosis from cerebellar granule cells: the mechanism of a transition to an L-type calcium channel coupling, Neuroscience 67, 595–607.PubMedCrossRefGoogle Scholar
  27. Pocock, J.M. and Nicholls, D.G., 1998, Exocytotic and non-exocytotic modes of glutamate release from cultured cerebellar granule cells during chemical ischaemia, J. Neurochem. 70, 806–813.PubMedCrossRefGoogle Scholar
  28. Randall, A. and Tsien, R.W., 1995, Pharmacological dissection of multiple types of calcium channel currents in rat cerebellar granule neurons, J. Neurosci. 15, 2995–3012.PubMedGoogle Scholar
  29. Rizzuto, R., Brini, M., Murgia, M. and Pozzan, T., 1993, Microdomains with high calcium close to IP3-sensitive channels that are sensed by neighboring mitochondria, Science 262, 744–747.PubMedCrossRefGoogle Scholar
  30. Savidge, J.R. and Bristow, D.R., 1997, Distribution of Calcium-permeable AMPA receptors among cultured rat cerebellar granule cells, Neuroreport 8, 1877–1882.PubMedCrossRefGoogle Scholar
  31. Simpson, P.B., Challiss, R.A.J. and Nahorski, S.R., 1995, Divalent-cation entry in cultured rat cerebellar granule cells measured using Mn2+ quench of fura-2 fluorescence, Eur. J. Neurosci. 7, 831–840.PubMedCrossRefGoogle Scholar
  32. Taylor, C.W. and Broad, L.M., 1998, Pharmacological analysis of intracellular Ca2+ signalling: Problems and pitfalls, TIPS 19, 370–374.PubMedGoogle Scholar
  33. Walsh, F.S. and Doherty, P., 1997, Neural cell adhesion molecules of the immunoglobulin superfamily: Role of axon growth and guidance, Annu. Rev. Cell Dev. Biol. 13, 425–456.PubMedCrossRefGoogle Scholar
  34. Wiley, J.W., Moses, H.C., Gross, R.A. and Macdonald, R.L., 1997, Dynorphin A-mediated reduction in multiple calcium currents involves a G(0 alpha)-subtype G protein in rat primary afferent neurons, J. Neurophys. 77, 1338–1348.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Jennifer M. Pocock
    • 1
  • Gareth J. O. Evans
    • 2
  1. 1.Cell Signalling Laboratory, Department of Neurochemistry, Institute of NeurologyUniversity College LondonLondonUK
  2. 2.The Physiological Laboratory, Department of PhysiologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations