Platelets have an essential role in primary haemostasis to arrest bleeding at a site of vessel wall disruption. Insufficient platelet activation or a reduced platelet number give rise to bleeding syndromes. On the other hand, high platelet activation contributes to thrombosis, which often starts with platelet deposition on a damaged atherosclerotic plaque. The formation of vaso-occlusive platelet thrombi or aggregates, usually with repeated embolization, is a major cause of arterial thrombosis, as occurring in the heart and brains, and resulting in myocardial infarction and so-called cerebrovascular accidents (stroke). Although there is little doubt that coronary and cerebral artery diseases are multifactorial disorders, where also abnormal coagulation, fibrinolysis, vessel wall function and blood flow dynamics can play a role, intervention studies show that in particular antiplatelet drugs provide a risk reduction of one out of every four cases.


Platelet Activation Human Platelet Platelet Adhesion Calcium Response Collagen Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afshar-Kharghan, V., Li, C.Q., Khoshnevis-Asl, M. and Lopez, J.A., 1999, Kozak sequence polymorphism of the glycoprotein (GP) Ibα gene is a major determinant of the plasma membrane levels of the platelet GP Ib-IX-V complex, Blood 94, 186–191.PubMedGoogle Scholar
  2. Alonso, M.T., Alvarez, J., Montero, M., Sanchez, A. and Garcia-Sancho, J., 1991, Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores, Biochem. J. 280, 783–789.PubMedGoogle Scholar
  3. Andersen, H., Greenberg, D.L., Fujikawa, K., Xu, W., Chung, D.W. and Davie, E.W., 1999, Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity, Proc. Natl Acad. Sci. USA 96, 11189–11193.PubMedGoogle Scholar
  4. Ariyoshi, H. and Salzman, E.W., 1996, Association of localized Ca2+ gradients with redistribution of glycoprotein Ilb-IIIa and F-actin in activated human blood platelets, Arterioscler. Thromb. Vasc. Biol. 16, 230–235.PubMedGoogle Scholar
  5. Asselin, J., Gibbins, J.M., Achison, M., Lee, Y.H., Morton, L.F., Farndale, R.W., Barnes, M.J. and Watson, S.P., 1997, A collagen-like peptide stimulates tyrosine phosphorylation of Syk and phospholipase Cγ2 in platelets independent of the integrin α 2 β 1, Blood 89,1235–1242.PubMedGoogle Scholar
  6. Authi, K.S., 1997, Ca2+ homeostasis in human platelets, in Handbook of Experimental Pharmacology, Vol.126, Platelets and Their Factors, F. von Bruchhausen and U. Walter (eds.), Springer, Berlin, pp. 325–370.Google Scholar
  7. Authi, K.S., Evenden, B.J. and Crawford, N., 1986, Metabolic and functional consequences of introducing inositol 1,4,5-trisphosphate into saponin-permeabilized human platelets, Biochem. J. 233, 707–718.PubMedGoogle Scholar
  8. Authi, K.S., Bokkala, S., Patel, Y., Kakkar, V.V. and Munkonge, R, 1993, Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-l,4-benzohydroquinone: Relationship to Ca2+ pools and relevance in platelet activation, Biochem. J. 294, 119–126.PubMedGoogle Scholar
  9. Banno, Y., Nakashima, S., Ohzawa, M. and Nozawa, Y, 1996, Differential translocation of phospholipase C isozymes to integrin-mediated cytoskeletal complexes in thrombin-stimulated human platelets, J. Biol. Chem. 271, 14989–14994.PubMedGoogle Scholar
  10. Banno, Y., Asano, T. and Nozawa, Y., 1998, Stimulation by G protein βγ subunits of phospholipase C-β isoforms in human platelets, Thromb. Haemostas. 79, 1008–1013.Google Scholar
  11. Bauer, M., Retzer, M., Wilde, J.I., Maschberger, P., Essler, M., Aepfelbacher, M., Watson, S.P. and Siess, W., 1999, Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets, Blood 94, 1665–1672.PubMedGoogle Scholar
  12. Béguin, S. and Kumar, R., 1997, Thrombin, fibrin and platelets: A resonance loop in which von Willebrand factor is a necessary link, Thromb. Haemostas. 78, 590–594.Google Scholar
  13. Béguin, S., Kumar, R., Keularts, I., Seligsohn, U., Coller, B.S. and Hemker, H.C., 1999, Fibrin-dependent platelet procoagulant activity requires GPIb receptors and von Willebrand factor, Blood 93, 564–570.PubMedGoogle Scholar
  14. Bennett, J.S., 1995, Hereditary disorders of platelet function, in Hematology, Basic Principles and Practice, R. Hoffman, E.J. Benz, S.S. Shattil, B. Furie, H.J. Cohen and L.E. Silberstein (eds.), Churchill Livingstone, New York, pp. 1909–1925.Google Scholar
  15. Berg, L.P., Shamsher, M.K., El-Daher, S.S., Kakkar, V.V. and Authi, K.S., 1997, Expression of human TRPC genes in the megakaryocytic cell lines MEG01, DAMI and HEL, FEBS Lett. 403, 83–86.PubMedGoogle Scholar
  16. Bertolino, G., Noris, P., Spedini, P. and Balduino, C.L., 1995, Ristocetin-induced platelet agglutination stimulates GPIIb/IIIa-dependent calcium influx, Thromb. Haemostas. 73, 689–692.Google Scholar
  17. Bettache, N., Gaffet, P., Allegre, N., Maurin, L., Toti, F., Freyssinet, J.M. and Bienvenüe, A., 1998, Impaired redistribution of phospholipids with distinctive cell shape change during Ca2+-induced activation of platelets from a patient with Scott syndrome, Br. J. Haematol. 101, 50–58.PubMedGoogle Scholar
  18. Bevers, E.M., Comfurius, P., van Rijn, J.L.M.L., Hemker, H.C. and Zwaal, R.F.A., 1982, Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets, Eur. J. Biochem. 122, 429 36.PubMedGoogle Scholar
  19. Börsch-Haubold, A.G., Ghomashchi, F., Pasquet, S., Goedert, M., Cohen, P., Gelb, M.H. and Watson, S.P, 1999, Phosphorylation of cytosolic phospholipase A2 in platelets is mediated by multiple stress-activated protein kinase pathways, Eur. J. Biochem. 265, 195–203.PubMedGoogle Scholar
  20. Brass, L.F., Laposata, M., Singh Banga and Rittenhouse, S.E., 1986, Regulation of the phosphoinositide hydrolysis pathway in thrombin-stimulated platelets by pertussis toxin-sensitive guanine nucleotide-binding protein, J. Biol. Chem. 261, 16838–16847.PubMedGoogle Scholar
  21. Brass, L.F., Vasallo, R.R., Belmonte, E., Ahuka, M., Cichowski, K. and Hoxie, J.A., 1992, Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus, J. Biol. Chem. 267, 13793–13798.Google Scholar
  22. Brass, L.F., Manning, D.R., Cichowski, K. and Abrams, C.S., 1997, Signaling through G proteins in platelets: To the integrins and beyond, Thromb. Haemostas. 78, 581–589.Google Scholar
  23. Bray, P.F., 1999, Integrin polymorphisms as risk factors for thrombosis, Thromb. Haemostas. 82, 337–344.Google Scholar
  24. Briedé, J.J., Heemskerk, J.W.M., Hemker, H.C. and Lindhout, T, 1999, Heterogeneity in microparticle formation and exposure of anionic phospholipids at the plasma membrane of single adherent platelets, Biochim. Biophys. Acta 1451, 163–172.PubMedGoogle Scholar
  25. Calverley, D.C., Kavanagh, T.J. and Roth, G.J., 1998, Human signaling protein 14-3-3ζ interacts with platelet glycoprotein Ib subunits Ibα and Ibβ, Blood 91, 1295–1303.PubMedGoogle Scholar
  26. Carlsson, L.E., Santoso, S., Spitzr, C., Kessler, C. and Greinacher, A., 1999, The α 2 gene coding sequence T807/A873 of the platelet collagen receptor integrin α 2 β 1 might be a genetic risk factor for the development of stroke in younger patients, Blood 93, 3583–3586.PubMedGoogle Scholar
  27. Carter, A.M., Catto, A.J., Bamford, J.M. and Grant, P.J., 1998, Platelet GP IIIa PlA and GP Ib variable tandem repeat polymorphisms and markers of platelet activation in acute stroke, Arterioscler. Thromb. Vasc. Biol. 18, 1124–1131.PubMedGoogle Scholar
  28. Cattaneo, M. and Gachet, C., 1999, ADP receptors and clinical bleeding disorders, Arterioscler. Thromb. Vasc. Biol. 19, 2281–2285.PubMedGoogle Scholar
  29. Cattaneo, M., Lecchi, A., Randi, A.M., McGregor, J.L. and Mannucci, P.M., 1992, Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate, Blood 80, 2787–2796.PubMedGoogle Scholar
  30. Cavallini, L., Coassin, M., Borean, A. and Alexandre, A., 1996, Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation, J. Biol. Chem. 271, 5545–5551.PubMedGoogle Scholar
  31. Clark, E.A., Shattil, S., Ginsberg, M.H., Bolen, J. and Brugge, S.J., 1994, Regulation of the protein tyrosine kinase, pp72syk, by platelet agonists and the integrin α IIb β 3, J. Biol. Chem. 269, 28859–28864.PubMedGoogle Scholar
  32. Clemetson, J.M., Polgár, J., Magnenat, E.M., Wells, T.N.C. and Clemetson, K.J., 1999, The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcαR and the natural killer receptors, J. Biol. Chem. 274, 29019–29024.PubMedGoogle Scholar
  33. Coller, B.S., 1997, Platelet GPIIb/IIIa antagonists: The first anti-integrin receptor therapeutics, J. Clin. Invest. 9, 1467–1471.Google Scholar
  34. Coller, B.S., Beer, J.H., Scudder, L.E. and Steinberg, M.H., 1989, Collagen-platelet interactions: Evidence for a direct interaction of collagen with platelet GPIa/IIa and an indirect interaction with platelet GPIIb/IIIa mediated by adhesive proteins, Blood 74, 182–192.PubMedGoogle Scholar
  35. Comfurius, P., Senden, J.M., Tilly, R.H., Schroit, A.J., Bevers, E.M. and Zwaal, R.F.A., 1990, Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase, Biochim. Biophys. Acta 1026, 153–160.PubMedGoogle Scholar
  36. Coughlin, S.R., 1999, Protease-activated receptors and platelet function, Thromb. Haemostas. 82, 353–356.Google Scholar
  37. Dachary-Prigent, J., Pasquet, J.M., Freyssinet, J.M. and Nurden, A.T., 1995, Calcium involvement in aminophospholipid exposure and microparticle formation during platelet activation: A study using Ca2+-ATPase inhibitors, Biochemistry 34, 11625–11634.PubMedGoogle Scholar
  38. Dachary-Prigent, J., Pasquet, J.M., Fressinaud, E., Toti, F. and Freyssinet, J.M., 1997, Amino-phospholipid exposure, microvesiculation and abnormal protein tyrosine phosphorylation in the platelets of a patient with Scott syndrome: A study using physiologic agonists and local anaesthetics, Br. J. Haematol. 99, 959–967.PubMedGoogle Scholar
  39. Daniel, J.L., Dangelmaier, C. and Smith, J.B., 1994, Evidence for a role for tyrosine phosphorylation of phospholipase Cγ2 in collagen-induced platelet cytosolic calcium mobilization, Biochem. J. 302, 617–622.PubMedGoogle Scholar
  40. Daniel, J.L., Dangermaier, C., Jin, J., Ashby, B., Smith, J.B. and Kunapuli, S.P., 1998, Molecular basis for ADP-induced platelet activation. Evidence for three distinct ADP receptors on human platelets, J. Biol. Chem. 273, 2024–2029.PubMedGoogle Scholar
  41. Dean, W.L., Pope, J.E., Brier, M.E. and Aronoff, G.R., 1994, Platelet calcium transport in hypertension, Hypertension 23, 31–37.PubMedGoogle Scholar
  42. Dean, W.L., Chen, D., Brandt, P.C. and Vanaman, T.C., 1997, Regulation of platelet plasma membrane Ca2+-ATPase by cAMP-dependent and tyrosine phosphorylation, J. Biol. Chem. 272, 15113–15119.PubMedGoogle Scholar
  43. Fabre, J.E., Nguyen, M.T., Latour, A., Keifer, J.A., Audoly, L.P., Coffman, T.M. and Koller, B.H., 1999, Decreased platelet aggregation, increase bleeding time and resistance to thromboembolism in P2Y1-deficient mice, Nature Medic. 10, 1199–1202.Google Scholar
  44. Falati, S., Edmead, C.E. and Poole, A.W., 1999, Glycoprotein Ib-V-IX, a receptor for von Willebrand factor, couples physically and functionally to the Fc receptor γ-chain, Fyn, and Lyn to activate human platelets, Blood 94, 1648–1656.PubMedGoogle Scholar
  45. Feijge, M.A.H., van Pampus, E.C.M., Lacabaratz-Porret, C., Hamulyàk, K., Lévy-Toledano, S., Enouf, J. and Heemskerk, J.W.M., 1998, Inter-individual varability in Ca2+ signalling in platelets from healthy volunteers: Relation with expression of endomembrane Ca2+-ATPases, Br. J. Haematol. 102, 850–859.PubMedGoogle Scholar
  46. Feng, D.L., Lindpaintner, K., Larson, M.G., Rao, V.S., O’Donnell, C.J., Lipnska, I., Schmitz, C., Sutherland, P.A., Silbershatz, H., D’Agostino, R.B., Muller, J.E., Myers, R.H., Levy, D. and Tofler, G.H., 1999, Increased platelet aggregability associated with platelet GPIIIa P1A2 polymorphism. The Framingham offspring study, Arterioscler. Thromb. Vasc. Biol. 19, 1142–1147.PubMedGoogle Scholar
  47. Fox, J.E., Austin, C.D., Reynolds, C.C. and Steffen, P.K., 1991, Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets, J. Biol. Chem. 266, 13289–13295.PubMedGoogle Scholar
  48. Fressinaud, E., Veyradier, A., Truchaud, F., Martin, I., Boyer-Neumann, C., Trossaert, M., and Meyer, D., 1998, Screening for von Willebrand disease with a new analyzer using high shear stress: A study of 60 cases, Blood 91, 479–483.Google Scholar
  49. Fuse, I., Hattori, A., Mito, M., Higuchi, W., Yahata, K., Shibata, A. and Aizawa, Y., 1996, Pathogenetic analysis of five cases with a platelet disorder characterized by the absence of thromboxane A2 (TxA2)-induced platelet aggregation in spite of normal TxA2 binding activity, Thromb. Haemostas. 76, 1080–1085.Google Scholar
  50. Geiger, J., Nolte, C., Butte, E., Sage, S.O. and Walter, U., 1992, Role of cGMP and cGMP-dependent protein kinase in nitrovasidilator inhibition of agonist-evoked calcium elevation in platelets, Proc. Natl. Acad. Sci. USA 89, 1031–1035.PubMedGoogle Scholar
  51. Geiger, J., Brich, J., Hönig-Liedl, P., Eigenthaler, M., Schanzenbächer, P., Herbert, J.M. and Walter, U., 1999, Specific impairment of human platelet P2YAC ADP receptor-mediated signaling by the antiplatelet drug Clopidogrel, Arterioscler. Thromb. Vasc. Biol. 19, 2007–2011.PubMedGoogle Scholar
  52. Gemmell, C.T., Sefton, M.V. and Yeo, E.L., 1993, Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann’s thrombastenia defect, J. Biol. Chem. 268, 14586–14589.PubMedGoogle Scholar
  53. Gibbins, J.M., Okuma, M., Farndale, R., Barnes, M. and Watson, S.P., 1997, Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor γ-chain, FEBS Lett. 413, 255–259.PubMedGoogle Scholar
  54. Goldstein, R.E., Andrews, M., Hall, W.J. and Moss, A.J., 1996, Marked reduction in long-term cardiac deaths with aspirin after a coronary event, J. Am. Coll. Cardiol. 28, 326–330.PubMedGoogle Scholar
  55. Gonzalez-Conejero, R., Lozano, M.L., Rivera, J., Corral, J., Iniesta, J.A., Moraleda, J.M. and Vicente, V, 1998, Polymorphisms of platelet membrane glycoprotein Ibα associated with arterial thrombotic disease, Blood 92, 2771–2776.PubMedGoogle Scholar
  56. Goto, S., Ikeda, Y., Saldivar, E. and Ruggeri, Z.M., 1998, Distinct mechanisms of platelet aggregation as a consequence of different shearing conditions, J. Clin. Invest. 101, 479–486.PubMedGoogle Scholar
  57. Gratacap, M.P., Payrastre, B., Viala, C., Mauco, G., Plantavid, M. and Chap, H., 1998, Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation of phospholipase C-γ2 is an early key event in FcγRIIA-mediated activation of human platelets, J. Biol. Chem. 273, 24314–24321.PubMedGoogle Scholar
  58. Greco, N., Jones, G.D., Tandon, N.N., Kornhauser, R., Jackson, B. and Jamieson, G.A., 1996, Differentiation of the two forms of GPIb functioning as receptors for α-thrombin and von Willebrand factor: Ca2+ responses of protease-treated human platelets activated with α-thrombin and the tethered ligand peptide, Biochemistry 35, 915–921.PubMedGoogle Scholar
  59. Gross, B.S., Melford, S.K. and Watson, S.P., 1999, Evidence that phospholipase Cγ2 interacts with Slp-76, Syk, Lyn, LAT and the Fc receptor γ-chain after stimulated of the collagen receptor glycoprotein VI in human platelets, Eur. J. Biochem.263, 612–623.PubMedGoogle Scholar
  60. Haimovich, B., Lipfert, L., Brugge, J.S. and Shattil, S.J., 1993, Tyrosine phosphorylation and cytoskeletal reorganization in platelets are triggered by interaction of integrin receptors with their immobilized ligands, J. Biol. Chem. 268, 15868–15877.PubMedGoogle Scholar
  61. Hallbrügge, M. and Walter, U., 1993, The regulation of platelet function by protein kinases, in Protein Kinases in Blood Cell Function, C.K. Huang and R.I. Sha’afi (eds.), CRC Press, Boca Raton, FL, pp. 245–298.Google Scholar
  62. Hechler, B., Léon, C., Vial, C., Vigne, P., Frelin, C., Cazenave, J.P. and Gachet, C., 1998, The P2Y1 receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation, Blood 92, 152–159.PubMedGoogle Scholar
  63. Heemskerk, J.W.M. and Sage, S.O., 1994, Calcium signalling in platelets and other cells, Platelets 5, 295–316.PubMedGoogle Scholar
  64. Heemskerk, J.W.M., Vis, P., Feijge, M.A.H., Hoyland, J., Mason, W.T. and Sage, S.O., 1993, Roles of phospholipase C and Ca2+-ATPase in calcium responses of single, fibrinogen-bound platelets, J. Biol. Chem. 268, 356–363.PubMedGoogle Scholar
  65. Heemskerk, J.W.M., Feijge, M.A.H., Sage, S.O. and Walter, U., 1994, Indirect regulation of Ca2+ entry by cAMP-dependent and cGMP-dependent protein kinases and phospholipase C in rat platelets, Eur. J. Biochem. 223, 543–551.PubMedGoogle Scholar
  66. Heemskerk, J.W.M., Feijge, M.A.H., Henneman, L., Rosing, R. and Hemker, H.C., 1997a, The Ca2+-mobilizing potency of α-thrombin and thrombin-receptor-activating peptide on human platelets. Concentration and time effects of thrombin-induced Ca2+ signaling, Eur. J. Biochem. 249, 547–555.PubMedGoogle Scholar
  67. Heemskerk, J.W.M., Vuist, W.M.J., Feijge, M.A.H., Reutelingsperger, C.P.M. and Lindhout, T., 1997b, Collagen but not fibrinogen surfaces induce bleb formation, exposure of phos-phatidylserine and procoagulant activity of adherent platelets: Evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses, Blood 90, 2615–2625PubMedGoogle Scholar
  68. Heemskerk, J.W.M., Siljander, P., Vuist, W.M.J., Breikers, G., Reutelingsperger, C.P.M., Barnes, M.J., Knight, C.G., Lassila, R. and Farndale, R.W., 1999, Function of glycoprotein VI and integrin α 2 β 1 in the procoagulant response of single, collagen-adherent platelets, Thromb. Haemostas. 81, 78–92.Google Scholar
  69. Hers, I., Donath, J., van Willigen, G. and Akkerman, J.W.N., 1998, Differential involvement of tyrosine and serine/threonine kinases in platelet integrin α IIb β 3 exposure, Arterioscler. Thromb. Vasc. Biol. 18, 404–414.PubMedGoogle Scholar
  70. Hussain, J.F. and Mahaut-Smith, M.R, 1999, Reversible and irreversible intracellular Ca2+ spiking in single isolated human platelets, J. Physiol. 514, 713–718.PubMedGoogle Scholar
  71. Ichinohe, T., Takayama, H., Ezumi, Y., Yanagi, S., Yamamura, H. and Okuma, M., 1995, Cyclic AMP-insensitive activation of c-Src and Syk protein-tyrosine kinases through platelet membrane glycoprotein VI, J. Biol. Chem. 270, 28029–29036.PubMedGoogle Scholar
  72. Ichinohe, T., Takayama, H., Ezumi, Y., Arai, M., Yamamoto, N., Takahashi, H. and Okuma, M., 1997, Collagen-stimulated activation of Syk but not c-Src is severely compromised in human platelets lacking membrane glycoprotein VI, J. Biol. Chem. 272, 63–68.PubMedGoogle Scholar
  73. Ikeda, Y., Handa, M., Kamata, T., Kawano, K., Kawai, Y., Watanabe, K., Kawakami, K., Sakai, K., Fukuyama, M., Itagaki, I., Yoshioka, A. and Ruggeri, Z.M., 1993, Transmembrane calcium influx associated with von Willebrand factor binding to GP Ib in the initiation of shear-induced platelet aggregation, Thromb. Haemostas. 69, 496–502.Google Scholar
  74. Jandrot-Perrus, M., Lagrue, A.H., Okuma, M. and Bon, C, 1997, Adhesion and activation of human platelets induced by convulxin involve glycoprotein VI and integrin α 2 β 1, J. Biol. Chem. 272, 27035–27041.PubMedGoogle Scholar
  75. Jen, C.J., Chen, H.I., Lai, K.C. and Usami, S., 1996, Changes in cytosolic calcium concentrations and cell morphology in single platelets adhered to fibrinogen-coated surface under flow, Blood 87, 3775–3782.PubMedGoogle Scholar
  76. Jin, J. and Kunapoli, S.P., 1998, Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation, Proc. Natl. Acad. Sci. USA 95, 8070–8074.PubMedGoogle Scholar
  77. Jung, S.M. and Moroi, M., 1998, Platelets interact with soluble and insoluble collagens through characteristically different reactions, J. Biol. Chem. 273, 14827–14837.PubMedGoogle Scholar
  78. Jy, W., Horstman, L.L., Wang, F., Duncan, R. and Ahn, Y.S., 1995, Platelet factor 3 in plasma fractions: Its relation to microparticle size and thromboses, Thromb. Res. 80, 471–482.PubMedGoogle Scholar
  79. Kahn, M.L., Nakanishi-Matsui, M., Shapiro, M.J., Ishihara, H. and Coughlin, S.R., 1999, Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin, J. Clin. Invest. 103, 879–887.PubMedGoogle Scholar
  80. Keely, P.J. and Parise, L.V., 1996, The α 2 β 1 integrin is a necessary co-receptor for collagen-induced activation of syk and the subsequent phosphorylation of phospholipase Cγ2 in platelets, J. Biol. Chem. 271, 26688–26676.Google Scholar
  81. Kehrel, B., Wierwille, S., Clemetson, K.J., Anders, O., Steiner, M., Knight, C.G., Farndale, R.W., Okuma, M. and Barnes, M.J., 1998, Glycoprotein VI is a major collagen receptor for platelet activation; it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not, Blood 91, 491–499.PubMedGoogle Scholar
  82. Keularts, I.M.L.W., van Gorp, R.M.A., Feijge, M.A.H., Vuist, W.M.J., and Heemskerk, J.W.M., 2000, α 2A-Adrenergic receptor stimulation potentiates calcium release in platelets by modulating cAMP levels, J. Biol. Chem. 275, 1763–1772.PubMedGoogle Scholar
  83. Konkle, B., 1997, The Bernard-Soulier syndrome, Trends Cardiovasc. Medic. 7, 239–244.Google Scholar
  84. Kovàcs, T., Berger, G., Corvazier, E., Pàszty, K., Brown, A., Bobe, R., Papp, B., Wuytack, F, Cramer, E.M. and Enouf, J., 1997, Immunolocalization of the multi-sarcoendoplasmic reticulum Ca2+-ATPase system in human platelets, Br. J. Haematol. 97, 192–203.PubMedGoogle Scholar
  85. Kramer, R.M., Roberts, E.F., Manetta, J.V., Hyslop, P.A. and Jakubowski, J.A., 1993, Thrombin-induced phosphorylation and activation of Ca2+-sensitive cytosolic phospholipase A2 in human platelets, J. Biol Chem. 268, 26796–26804.PubMedGoogle Scholar
  86. Kroll, M.H., Heliums, J.D., McIntire, L.V., Schafer, A.I. and Moake, J.L., 1996, Platelets and shear stress, Blood 88, 1525–1541.PubMedGoogle Scholar
  87. Kunapuli, S.P., 1998, Multiple P2 receptor subtypes on platelets: A new interpretation of their function, Trends Pharmacol Sci. 19, 391–394.PubMedGoogle Scholar
  88. Kunishima, S., Lopez, J.A., Kobayashi, S., Imai, N., Kamiya, T., Saito, H. and Naoe, T., 1997, Missense mutations of the glycoprotein (GP) Ibα gene impairing the GPIb α/ß disulfide linkage in a family with giant platelet disorder. Blood, 89, 2402–2412.Google Scholar
  89. Kuwahara, M., Sugimoto, M., Tsuji, S., Miyata, S. and Yoshioka, A., 1999, Cytosolic calcium changes in a process of platelet adhesion and cohesion on a von Willebrand factor-coated surface under flow conditions, Blood 94, 1149–1155.PubMedGoogle Scholar
  90. Lacabaratz-Porret, C., Corvazier, E., Kovàcs, T., Bobe, R., Bredoux, R., Launay, S., Papp, B. and Enouf, J., 1998, Platelet sarco/endoplasmic reticulum Ca2+-ATPase isoform 3b and Rap1b: Interrelation and regulation in physiopathology, Biochem. J. 332, 173–181.PubMedGoogle Scholar
  91. Lagrue, A.H., Francischetti, I.M.B., Guimaraes, J.A. and Jandrot-Perrus, M., 1999, Phosphatidylinositol 3′-kinase and tyrosine-phosphatase activation positively modulate convulxin-induced platelet activation. Comparison with collagen, FEBS Lett. 44, 95–100.Google Scholar
  92. Lankhof, H., Wy, Y.P., Vink, T., Schiphorst, M.E., Zerwes, H.G., de Groot, P.G. and Sixma, J.J., 1995, Role of the glycoprotein Ib-binding A1 repeat and the RGDS sequence in platelet adhesion to human recombinant von Willebrand factor, Blood 86, 1035–1042.PubMedGoogle Scholar
  93. Law, D.A., Nannizzi-Alaimo, L., Ministri, K., Hughes, P.E., Forsyth, J., Turner, M., Shattil, S.J., Ginsberg, M.H., Tybulewicz, V.L.J. and Phillips, D.R., 1999, Genetic and pharmacological analyses of Syk function in α IIb β 3 signaling in platelets, Blood 93, 2645–2652.PubMedGoogle Scholar
  94. Lee, Y., Jy, W., Horstman, L.L., Janania, J., Kelley, R. and Ahn, Y.S., 1993, Elevated platelet microparticles in multi-infarct dementias and transient ischemic attacks, Thromb. Res. 72, 295–304.PubMedGoogle Scholar
  95. Lee, S.B., Rao, A.K., Lee, K.H., Yang, X., Bae, Y.S. and Rhee, S.G., 1996, Decreased expression of phospholipase C-β2 isozyme in human platelets with impaired function, Blood 88, 1684–1691.PubMedGoogle Scholar
  96. López, J.A., Andrews, R.K., Afshar-Kharghan, V. and Berndt, M.C., 1998, Bernard-Soulier syndrome, Blood 91, 4397–4418.PubMedGoogle Scholar
  97. MacKenzie, A.B., Mahaut-Smith, M.P. and Sage, S.O., 1996, Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets, J. Biol. Chem. 271, 2879–2881.PubMedGoogle Scholar
  98. Marshall, P.W., Williams, A.J., Dixon, R.M., Growcott, J.W., Warburton, S., Armstrong, J. and Moores, J., 1997, A comparison of the effects of aspirin on bleeding time measured using the Simplate method and closure time measured using the PFA-100 in healthy volunteers, Br. J. Clin. Pharmacol. 44, 151–155.PubMedGoogle Scholar
  99. Mills, D.C., 1996, ADP receptors on platelets, Thromb. Haemostas. 76, 835–856.Google Scholar
  100. Mitsui, T., Yokoyama, S., Shimizu, Y., Katsuura, M., Akiba, K. and Hayasaka, K., 1997, Defective signal transduction through the thromboxane A2 receptor in a patient with a mild bleeding disorder: Deficiency of the inositol 1,4,5-trisphosphate formation despite normal G-protein activation, Thromb. Haemostas. 77, 991–995.Google Scholar
  101. Moroi, M. and Jung, S.M., 1997, Platelet receptors for collagen, Thromb. Haemostas. 78, 439–444.Google Scholar
  102. Moroi, M., Jung, S.M., Nomura, S., Sekiguchi, S., Ordinas, A. and Diaz-Ricart, M., 1997, Analysis of the involvement of the von Willebrand factor-glycoprotein Ib interaction in platelet adhesion to a collagen-coated surface under flow conditions, Blood 90, 4413–4424.PubMedGoogle Scholar
  103. Nieuwenhuis, H.K., Sakariassen, K.S., Houdijk, W.P.M., Nievelstein, P.F.E.M. and Sixma, J.J., 1986, Deficiency of platelet membrane glycoprotein Ia associated with a decreased platelet adhesion to subendothelium: A defect in platelet spreading, Blood 68, 692–695.PubMedGoogle Scholar
  104. Nurden, A.T., 1999, Inherited abnormalities of platelets, Thromb. Haemostas. 82, 468–480.Google Scholar
  105. Nurden, P., Savi, P., Heilmann, E., Bihour, C., Herbert, J.M., Maffrand, J.P. and Nurden, A., 1995, An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. Its influence on glycoprotein IIb-IIIa complex function, J. Clin. Invest. 95, 1612–1622.PubMedGoogle Scholar
  106. Offermanns, S., Toombs, C.F., Hu, Y.H. and Simon, M.I., 1998, Defective platelet activation in q-deficient mice, Nature 389, 183–186.Google Scholar
  107. Parekh, A.B. and Penner, R., 1997, Store depletion and calcium influx, Physiol. Rev. 77, 902–930.Google Scholar
  108. Pasquet, J.M., Dachary-Prigent, J. and Nurden, A.T., 1996, Calcium influx is a determining factor of calpain activation and microparticle formation in platelets, Eur. J. Biochem. 239, 647–654.PubMedGoogle Scholar
  109. Pasquet, J.M., Dachary-Prigent, J. and Nurden, A.T., 1998, Microvesicle release is associated with extensive protein tyrosine dephosphorylation in platelets stimulated by A23187 or a mixture of thrombin and collagen, Biochem. J. 333, 591–599.PubMedGoogle Scholar
  110. Paul, B.Z.S., Daniel, J.L. and Kunapuli, S.P., 1999a, Platelet shape change is mediated by both calcium-dependent and-independent signaling pathways, J. Biol. Chem. 274, 28293–28300.PubMedGoogle Scholar
  111. Paul, B.Z.S., Jin, J. and Kunapuli, S.P., 1999b, Molecular mechanism of thromboxane A2-induced platelet aggregation, J. Biol. Chem. 274, 29108–29114.PubMedGoogle Scholar
  112. Perutelli, P. and Mori, P.G., 1992, Biochemical and molecular basis of Glanzmann’s thrombasthenia, Haematologica 77, 421–426.PubMedGoogle Scholar
  113. Polanowska-Grabowska, R. and Gear, A.R.L., 1992, High-speed platelet adhesion under conditions of rapid flow, Proc. Natl. Acad. Sci. USA 89, 5754–5758.PubMedGoogle Scholar
  114. Polgár, J., Clemetson, J.M., Kehrel, B.E., Wiedemann, M., Magnenat, E.M., Wells, T.N.C. and Clemetson, K.J., 1997, Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom, via the p62/GPVI collagen receptor, J. Biol. Chem. 272, 13576–13583.PubMedGoogle Scholar
  115. Poole, A., Gibbins, J.M., Turner, M., van Vugt, M.J., van de Winkel, J.G.J., Tybulewicz, V.L.J. and Watson, S.P., 1997, The Fc receptor γ-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen, EMBO J. 16, 2333–2341.PubMedGoogle Scholar
  116. Quinton, T.M., Brown, K.D. and Dean, W.T., 1996, Inositol 1,4,5-trisphosphate-mediated Ca2+ release from platelet internal membranes is regulated by differential phosphorylation, Biochemistry 35, 6865–6871.PubMedGoogle Scholar
  117. Rao, A.K., Kowalska, M.A., Wachtfogel, Y.T. and Colman, R.W., 1988, Differential requirements for platelet aggregation and inhibition of adenylate cyclase by epinephrine. Studies of a familial platelet α 2A-adrenergic receptor defect, Blood 71, 494–501.PubMedGoogle Scholar
  118. Rao, A.K., Disa, J. and Yang, X., 1993, Concomitant defect in internal release and influx of calcium in patients with congenital platelet dysfunction and impaired agonist-induced calcium mobilization, J. Lab. Clin. Med. 121, 52–63.PubMedGoogle Scholar
  119. Reverter, J.C., Béguin, S., Kessels, H., Kumar, R., Hemker, H.C. and Coller, B.S., 1996, Inhibition of platelet-mediated, tissue-factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. Potential implications for the effect of c7E3 Fab treatment on acute thrombosis and ‘clinical restenosis’, J. Clin. Invest. 98, 863–874.PubMedGoogle Scholar
  120. Rosado, J.A., Jenner, S. and Sage, S.O., 2000, A role for the active cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets: Evidence for conformational coupling, J. Biol. Chem. 275, 7527–7533.PubMedGoogle Scholar
  121. Rosing, J., Bevers, E.M., Comfurius, P., Hemker, H.C., van Dieijen, G., Weiss, H.J. and Zwaal, R.F.A., 1985, Impaired factor X and prothrombin activation associated with decreased phospholipid exposure in platelets from a patient with a bleeding disorder, Blood 65, 1557–1561.PubMedGoogle Scholar
  122. Sadler, J.E., 1991, Von Willebrand factor, J. Biol. Chem. 266, 22777–22780.PubMedGoogle Scholar
  123. Saelman, E.M., Kehrel, B., Hese, K.M., de Groot, P.G., Sixma, J.J. and Nieuwenhuis, H.K., 1994, Platelet adhesion to collagen and endothelial cell matrix under flow conditions is not dependent on platelet glycoprotein IV, Blood 83, 3240–3244.PubMedGoogle Scholar
  124. Sage, S.O., 1997, Calcium entry mechanisms in human platelets, Exp. Physiol. 82, 807–823.PubMedGoogle Scholar
  125. Sage, S.O., Yamoah, E.H. and Heemskerk, J.W.M., 2000. The roles of P2X1 and P2TAC receptors in ADP-evoked calcium signalling in human platelets, Cell Calcium, in press.Google Scholar
  126. Saido, T.C., Suzuki, H., Yamazaki, H., Tanoue, K. and Suzuki, K., 1991, In situ capture of μ-calpain activation in platelets, J. Biol. Chem. 268, 7422–7426.Google Scholar
  127. Santoso, S., Kunicki, T.J., Kroll, H., Haberbosch, W. and Gardemann, A., 1999, Association of the platelet glycoprotein Ia C807T gene polymorphism with nonfatal myocardial infarction in younger patients, Blood 93, 2449–2453.PubMedGoogle Scholar
  128. Sargeant, P., Clarkson, W.D., Sage, S.O. and Heemskerk, J.W.M., 1992, Calcium influx in fura-2-loaded human platelets is evoked by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone and reduced by inhibitors of cytochrome P-450, Cell Calcium 13, 553–564.PubMedGoogle Scholar
  129. Sargeant, P., Farndale, R.W. and Sage, S.O., 1993, ADP-and thapsigargin-evoked Ca2+ entry and protein tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets, J. Biol. Chem. 268, 18151–18156.PubMedGoogle Scholar
  130. Scharenberg, A.M. and Kinet, J.P., 1998, Ptd-3,4,5-P3, a regulatory nexus between tyrosine kinases and sustained calcium signals, Cell 94, 5–8.PubMedGoogle Scholar
  131. Shattil, S.J., Kashiwagi, H. and Pampori, N., 1998, Integrin signaling: The platelet paradigm, Blood 91, 2645–2657.PubMedGoogle Scholar
  132. Siess, W., 1989, Molecular mechanisms of platelet activation, Physiol. Rev. 69, 58–178.PubMedGoogle Scholar
  133. Sims, P.J., Faioni, E.M., Wiedmer, T. and Shattil, S.J., 1988, Complement proteins C5–9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity, J. Biol. Chem. 263, 18205–18212.PubMedGoogle Scholar
  134. Sims, P.J., Wiedmer, T., Esmon, C.T., Weiss, H.J. and Shattil, S.J., 1989, Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: An isolated defect in platelet procoagulant activity, J. Biol. Chem. 264, 17049–17057.PubMedGoogle Scholar
  135. Sixma, J.J. and Wester J., 1977, The hemostatic plug, Semin. Hematol 14, 265–299.PubMedGoogle Scholar
  136. Smeets, E.F., Heemskerk, J.W.M., Comfurius, P., Bevers, E.M. and Zwaal, R.F.A., 1993, Thapsigargin amplifies the platelet procoagulant response caused by thrombin, Thromb. Haemostas. 70, 1024–1029.Google Scholar
  137. Standley, P.R., Ali, S., Bapna, C. and Sowers, J.R., 1993, Increased platelet cytosolic calcium responses to low density lipoprotein in type II diabetes with and without hypertension, Am. J. Hypertens. 6, 938–943.PubMedGoogle Scholar
  138. Sun, B., Li, J., Okahara, K. and Kambayashi, J.I., 1998, P2X1 purinoceptor in human platelets. Molecular cloning and functional characterization after heterologous expression, J. Biol. Chem. 273, 11544–11547.PubMedGoogle Scholar
  139. Tans, G., Rosing, J., Thomassen, M.C.L.G.D., Heeb, M.J., Zwaal, R.F.A. and Griffin, J.H., 1991, Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles, Blood 77, 2641–2648.PubMedGoogle Scholar
  140. Tsuji, S., Sugimoto, M., Kuwahara, M., Nishio, K., Takahashi, Y., Fujimura, Y., Ikeda, Y. and Yoshioka, A., 1996, Role and initiation mechanism of the interaction of glycoprotein Ib with surface-immobilized von Willebrand factor in a solid-phase platelet cohesion process, Blood 88, 3854–3861.PubMedGoogle Scholar
  141. Vanags, D.M., Orrenius, S. and Aguilar-Santelises, M., 1997, Alterations in Bcl-2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis, Br. J. Haematol. 99, 824–831.PubMedGoogle Scholar
  142. Verkleij, M.W., Morton, L.F., Knight, C.G., de Groot, P.G., Barnes, M.J. and Sixma, J.J., 1998, Simple collagen-like peptides support platelet adhesion under static but not under flow conditions: Interaction via α 2 ß 1 and von Willebrand factor with specific sequences in native collagen is a requirement to resist shear forces, Blood 91, 3808–3816.PubMedGoogle Scholar
  143. Vial, C., Hechler, B., Léon, C., Cazenave, J.P. and Gachet, C., 1997, Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines, Thromb. Haemostas. 78, 1500–1504.Google Scholar
  144. Vicari, A.M., Monzani, M.L., Pellegatta, F., Ronchi, P., Galli, L. and Folli, F., 1994, Platelet calcium homeostasis is abnormal in patients with severe arteriosclerosis, Arterioscler. Thromb. 14, 1420–1424.PubMedGoogle Scholar
  145. Vu, T.K.H., Hung, D.T., Wheaton, V.I. and Coughlin, S.R., 1991, Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation, Cell 64, 1057–1068.PubMedGoogle Scholar
  146. Vuist, W.M.J., Feijge, M.A.H. and Heemskerk, J.W.M., 1997, Kinetics of store-operated Ca2+ influx evoked by endomembrane Ca2+-ATPase inhibitors in human platelets, Prostagland. Leukotr. Essential Fatty Acids 57, 447–550.Google Scholar
  147. Watson, S.P., 1999, Collagen receptor signaling in platelets and megakaryocytes, Thromb. Haemostas. 82, 365–376.Google Scholar
  148. Weiss, H.J. and Lages, B., 1997, Platelet prothrombinase activity and intracellular calcium responses in patients with storage pool deficiency, glycoprotein IIb-IIIa deficiency, or impaired platelet coagulant activity. A comparison with Scott syndrome, Blood 89, 1599–1611.PubMedGoogle Scholar
  149. Weiss, E.J., Bray, P.F., Tayback, M., Schulman, S.P., Kickler, T.S., Becker, L.C., Weiss, J.L., Gerstenblith, G. and Goldschmidt-Clermont, P.J., 1996, A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis, New Engl. J. Med. 334, 1090–1094.PubMedGoogle Scholar
  150. Wiedmer, T., Shattil, S.J., Cunningham, M. and Sims, P.J., 1990, Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor, Biochemistry 29, 623–632.PubMedGoogle Scholar
  151. Williamson, P., Bevers, E.M., Smeets, E.F., Comfurius, P., Schlegel, R.A. and Zwaal, R.F.A., 1995, Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets, Biochemistry 34, 10448–10455.PubMedGoogle Scholar
  152. Wolf, B.B., Goldstein, J.C., Stennicke, H.R., Beere, H., Amarante-Mendes, G.P., Salvesen, G.S. and Green, D.G., 1999, Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation, Blood 94, 1683–1692.PubMedGoogle Scholar
  153. Xu, W.F., Andersen, H., Whitmore, T.E., Presnell, S.R., Yee, D.P., Ching, A., Gilbert, T., Davie, E.W. and Foster, D.C., 1999, Cloning and characterization of human protease-activated receptor 4, Proc. Natl. Acad. Sci. USA 95, 6642–6646.Google Scholar
  154. Yuan, Y., Dopheide, S.M., Ivanidis, C., Salem, H.H. and Jackson, S.P., 1997, Calpain regulation of cytoskeletal signaling complexes in von Willebrand factor-stimulated platelets. Distinct roles for glycoprotein Ib-V-IX and glycoprotein IIb-IIIa (integrin α IIb β 3) in von Willebrand factor-induced signal transduction, J. Biol. Chem. 272, 21847–21854.PubMedGoogle Scholar
  155. Zwaal, R.F.A. and Schroit, A.J., 1997, Pathophysiological implications of membrane phospholipid asymmetry in blood cells, Blood 89, 1121–1132.PubMedGoogle Scholar
  156. Zwaal, R.F.A., Comfurius, P. and Bevers, E.M., 1992, Platelet procoagulant activity and microvesicle formation in hemostasis and thrombosis, Biochim. Biophys. Acta 1180, 1–8.PubMedGoogle Scholar
  157. Zwaal, R.F.A., Comfurius, P. and Bevers, E.M., 1993, Mechanism and function of changes in membrane-phospholipid asymmetry in platelets and erythrocytes, Biochem. Soc. Trans. 21, 248–253.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • J. W. M. Heemskerk
    • 1
  1. 1.Departments of Biochemistry (CARIM) and Human Biology (NU-TRIM)University of MaastrichtMaastrichtThe Netherlands

Personalised recommendations