High Calcium Concentrations, Calpain Activation and Cytoskeleton Remodeling in Neuronal Regeneration after Axotomy

  • M. E. Spira
  • N. E. Ziv
  • R. Oren
  • A. Dormann
  • D. Gitler


A vast number of studies has demonstrated causal relations between excessive elevation of the free intra neuronal calcium concentration ([Ca2+] i ) and neurodegeneration. Calcium-induced neurodegeneration is believed to occur in acute conditions such as nerve-transection induced Wallerian degeneration (Waller, 1850), mechanical brain trauma, brain ischemia, hypoglycemic coma and status epilepticus. Calcium-induced neurodegeneration is also believed to participate in chronic conditions such as Alzheimer’s disease and aging. The degenerative effects of the elevated [Ca2+] i are thought to be mediated by the unbalanced activation of enzymes that take part in the normal neuronal function. These include proteinases, phospholipases, phosphatases and protein kinases. In turn, the unbalanced activation of these enzymes leads to cytoskeletal damage, membrane dysfunction, enhanced production of free radicals and, finally, neuronal degeneration (reviewed in Choi, 1994; Siesjo, 1994; Rothman and Olney, 1995; Kristian and Siesjo, 1998).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augustine, G.J. and Neher, E., 1992, Calcium requirements for secretion in bovine chromaffin cells, J. Physol. Lond. 450, 247–271.Google Scholar
  2. Aunis, D. and Bader, M.F., 1988, The cytoskeleton as a barrier to exocytosis in secretory cells, J. Exp. Biol. 139, 253–266.PubMedGoogle Scholar
  3. Ballinger, M.L. and Bittner, G.D., 1980, Ultrastructural studies of severed medial giant and other CNS axons in crayfish, Cell Tissue Res. 208, 123–133.PubMedCrossRefGoogle Scholar
  4. Bednarski, E., Vanderklish, P., Gall, C., Saido, T.C., Bahr, B.A. and Lynch, G., 1995, Translational suppression of calpain I reduces NMDA-induced spectrin proteolysis and pathophysiology in cultured hippocampal slices, Brain Res. 694, 147–157.PubMedCrossRefGoogle Scholar
  5. Benbassat, D. and Spira, M.E., 1993, Survival of isolated axonal segments in culture: Morphological, ultrastructural, and physiological analysis, Exp. Neurol. 122, 295–310.PubMedCrossRefGoogle Scholar
  6. Bittner, G.D., 1991, Long-term survival of anucleate axons and its implications for nerve regeneration, Trends Neurosci. 14, 188–193.PubMedCrossRefGoogle Scholar
  7. Borgens, R.B., Jaffe, L.F. and Cohen, M.J., 1980, Large and persitent electrical currents enter the transected lamprey spinal cord, Proc. Natl. Acad. Sci. USA 11, 1209–1213.CrossRefGoogle Scholar
  8. Brorson, J.R., Manzolillo, P.A. and Miller, R.J., 1994, Ca2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells, J. Neurosci. 14, 187–197.PubMedGoogle Scholar
  9. Choi, D.W., 1994, Calcium and excitotoxic neuronal injury, Ann. N.Y. Acad. Sci. 141, 162–171.Google Scholar
  10. del Cerro, S., Arai, A., Kessler, M., Bahr, B.A., Vanderklish, P., Rivera, S. and Lynch, G., 1994, Stimulation of NMDA receptors activates calpain in cultured hippocampal slices, Neurosci. Lett. 167, 149–152.PubMedCrossRefGoogle Scholar
  11. Faddis, B.T., Hasbani, M.J. and Goldberg, M.P., 1997, Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro, J. Neurosci. 17, 951–959.PubMedGoogle Scholar
  12. Gabso, M., Neher, E. and Spira, M.E., 1997, Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons, Neuron 18, 473–481.PubMedCrossRefGoogle Scholar
  13. Gallant, P.E., 1988, Effects of the extarnal ions and metabolic poisoning on the constriction of the squid giant axon after axotomy, J. Neurosci. 8, 1479–1484.PubMedGoogle Scholar
  14. George, E.B., Glass, J.D. and Griffin, J.W., 1995, Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels, J. Neurosci. 15, 6445–6452.PubMedGoogle Scholar
  15. Gitler, D. and Spira, M.E., 1998, Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation, Neuron 20, 1123–1135.PubMedCrossRefGoogle Scholar
  16. Godell, C.M., Smyers, M.E., Eddleman, C.S., Ballinger, M.L., Fishman, H.M. and Bittner, G.D., 1997, Calpain activity promotes the sealing of severed giant axons, Proc. Natl. Acad. Sci. USA 94, 4751–4756.PubMedCrossRefGoogle Scholar
  17. Gross, G.W. and Higgins, M.L., 1987, Cytoplasmic damage gradients in dendrites after transection lesions, Exp. Brain Res. 67, 52–60.PubMedCrossRefGoogle Scholar
  18. Horwitz, S.B., 1994, Taxol (paclitaxel): Mechanisms of action, Ann. Oncol. 5 (Suppl. 6), S3–S6.PubMedGoogle Scholar
  19. Howard, M.J., David, G. and Barrett, J.N., 1999, Resealing of transected myelinated mammalian axons in vivo: Evidence for involvement of calpain, Neuroscience 93, 807–815.PubMedCrossRefGoogle Scholar
  20. Kandel, E.R., Schwartz, J.H. and Jessell, T.M., 1991, Principles of Neuronal Science, Elsevier, New York.Google Scholar
  21. Kosaka, T., Kosaka, K., Nakayama, T., Hunziker, W. and Heizmann, C.W., 1993, Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata dendrites: Quantitative analysis by immunogold labeling, Exp. Brain Res. 93, 483–491.PubMedCrossRefGoogle Scholar
  22. Kristian, T. and Siesjo, B.K., 1998, Calcium in ischemic cell death, Stroke 29, 705–718.PubMedCrossRefGoogle Scholar
  23. Leytus, S.P., Melhado, L.L. and Mangel, W.F., 1983a, Rhodamine-based compounds as fluorogenic substrates for serine proteinases, Biochem. J. 209, 299–307.PubMedGoogle Scholar
  24. Leytus, S.P., Patterson, W.L. and Mangel, W.F., 1983b, New class of sensitive and selective fluorogenic substrates for serine proteinases. Amino acid and dipeptide derivatives of rhodamine, Biochem. J. 215, 253–260.PubMedGoogle Scholar
  25. Llinas, R., Sugimori, M. and Silver, R.B., 1992, Microdomains of high calcium concentration in a presynaptic terminal, Science 256, 677–679.PubMedCrossRefGoogle Scholar
  26. Lynch, G. and Baudry, M., 1984, The biochemistry of memory: A new and specific hypothesis, Science 224, 1057–1063.PubMedCrossRefGoogle Scholar
  27. Lynch, G., Kessler, M., Arai, A. and Larson, J., 1990, The nature and causes of hippocampal long-term potentiation, Prog. Brain Res. 83, 233–250.PubMedCrossRefGoogle Scholar
  28. Neher, E., 1995, The use of fura-2 for estimating Ca buffers and Ca fluxes, Neuropharmacology 34, 1423–1442.PubMedCrossRefGoogle Scholar
  29. Perrin, D., Moller, K., Hanke, K. and Soling, H.D., 1992, cAMP and Ca(2+)-mediated secretion in parotid acinar cells is associated with reversible changes in the organization of the cytoskeleton, J. Cell Biol. 116, 127–134.PubMedCrossRefGoogle Scholar
  30. Roberts, W.M., 1993, Spatial calcium buffering in saccular hair cells, Nature 363, 74–76.PubMedCrossRefGoogle Scholar
  31. Rothman, S.M. and Olney, J.W., 1995, Excitotoxicity and the NMDA receptor — Still lethal after eight years, Trends Neurosci. 18, 57–58.PubMedCrossRefGoogle Scholar
  32. Saido, T.C., Sorimachi, H. and Suzuki, K., 1994, Calpain: New perspectives in molecular diversity and physiological-pathological involvement, FASEB J. 8, 814–822.PubMedGoogle Scholar
  33. Seubert, P., Larson, J., Oliver, M., Jung, M.W., Baudry, M. and Lynch, G., 1988, Stimulation of NMDA receptors induces proteolysis of spectrin in hippocampus, Brain Res. 460, 189–194.PubMedCrossRefGoogle Scholar
  34. Siesjo, B.K., 1994, Calcium-mediated processes in neuronal degeneration, Ann. N.Y. Acad. Sci. 747, 140–161.PubMedCrossRefGoogle Scholar
  35. Spira, M.E., Benbassat, D. and Dormann, A., 1993, Resealing of the proximal and distal cut ends of transected axons: Electrophysiological and ultrastructural analysis, J. Neurobiol. 24, 300–316.PubMedCrossRefGoogle Scholar
  36. Strautman, A.F., Cork, R.J. and Robinson, K.R., 1990, The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields, J. Neurosci. 10, 3564–3575.PubMedGoogle Scholar
  37. Vanderklish, P., Saido, T.C., Gall, C., Arai, A. and Lynch, G., 1995, Proteolysis of spectrin by calpain accompanies theta-burst stimulation in cultured hippocampal slices, Brain Res. Mol. Brain Res. 32, 25–35.PubMedCrossRefGoogle Scholar
  38. Waller, A.V., 1850, Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog and observations of the alterations produced thereby in the structure of their primitive fibres, Philos. Trans. Roy. Soc. Lond. (Biol.) 140, 423–429.CrossRefGoogle Scholar
  39. Wang, K.K. and Yuen, P.W., 1994, Calpain inhibition: An overview of its therapeutic potential, Trends Pharmacol. Sci. 15, 412–419.PubMedCrossRefGoogle Scholar
  40. Xie, X.Y. and Barrett, J.N., 1991, Membrane resealing in cultured rat septal neurons after neurite transection: Evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly, J. Neurosci. 11, 3257–3267.PubMedGoogle Scholar
  41. Yawo, H. and Kuno, M., 1983, How a nerve fiber repairs its cut end: Involvement of phospholipase A2, Science 222, 1351–1353.PubMedCrossRefGoogle Scholar
  42. Yawo, H. and Kuno, M., 1985, Calcium dependence of membrane sealing at the cut end of the cockroach giant axon, J. Neurosci. 5, 1626–1632.PubMedGoogle Scholar
  43. Ziv, N.E. and Spira, M.E., 1993, Spatiotemporal distribution of Ca2+ following axotomy and throughout the recovery process of cultured Aplysia neurons, Eur. J. Neurosci. 5, 657–668.PubMedCrossRefGoogle Scholar
  44. Ziv, N.E. and Spira, M.E., 1995, Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range, J. Neurophysol. 74, 2625–2637.Google Scholar
  45. Ziv, N.E. and Spira, M.E., 1997, Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones, J. Neurosci. 17, 3568–3579.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • M. E. Spira
    • 1
    • 2
  • N. E. Ziv
    • 1
    • 2
  • R. Oren
    • 1
    • 2
  • A. Dormann
    • 1
    • 2
  • D. Gitler
    • 1
    • 2
  1. 1.Department of Neurobiology, Life Science InstituteThe Hebrew University of JerusalemIsrael
  2. 2.The Interuniversity Institute for Marine Sciences EilatIsrael

Personalised recommendations