Advertisement

Interaction of Dimeric S100B(ββ) with the Tumor Suppressor Protein p53: A Model for Ca2+-Dependent S100-Target Protein Interactions

  • David J. Weber
  • Richard R. Rustandi
  • France Carrier
  • Danna B. Zimmer

Abstract

The tumor suppressor protein p53 interacts with a number of proteins to mediate its pleiotropic effects (Giaccia and Kastan, 1998; Levine, 1997). The Ca2+-dependent interaction of p53 with members of the S100 calcium binding protein family is of particular interest since like p53, these dimeric proteins affect cell cycle progression and are overexpressed in numerous tumor cells (Donato, 1991, 1999; Heizman, 1999; Ilg, 1996; Kligman and Hilt, 1988; Schafer and Heizmann, 1996; Zimmer et al., 1995). For example, reactive gliomas have as much as 20 times more S100B (ββ) than in non-transforming cell lines (Donato, 1991). Increased levels of S100B (ββ) are also found in renal cell tumors and malignant mature T-cells (such as doubly negative CD4/CD8 adult T-cells in leukemia patients). As is the case for S100B(ββ), a number of other S100 proteins are often upregulated in cancer (Kligman and Hilt, 1988). For example, S100A1, S100A6, and S100B(ββ) are elevated significantly in metastatic human mammary epithelial cells (Schafer and Heizmann, 1996), and increased levels of CAPL (S100A4) in transgenic mice induce metastatic mammary tumors (Barraclough, 1998; Sherbet and Lakshmi, 1998). In the case of S100A4, expression of antisense RNA to S100A4 suppresses metastatic potential for a high-metastatic Lewis lung carcinoma (Barraclough, 1998; Sherbet and Lakshmi, 1998). In addition, protein levels of S100B(ββ), S100L (S100A2), S100A4, and S100A6 correlate with malignant melanoma as detected by antibodies specific for each protein (McNutt, 1998).

Keywords

S100 Protein Dime Interface Dependent Interaction S100 Protein Family Target Protein Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber K.R. McClintock K.A. Jamieson G.A. R.V.W D. and Shaw G.S. 1999 Specificity and Zn enhancement of S100B binding epitope TRTK-12 J. Biol. Chem. 274 1502–1508.Google Scholar
  2. Barraclough, R., 1998, Calcium-binding protein S100A4 in health and disease, Biochem. Biophys. Acta 1448, 190–199.PubMedCrossRefGoogle Scholar
  3. Baudier, J. and Cole, R.D., 1988, Interaction between the microtubule-associated τ proteins and S100b regulate τ protein phosphorylation by the Ca2+/calmodulin-dependent protein kinase II, J. Biol. Chem. 263, 5876–5883.PubMedGoogle Scholar
  4. Baudier, J., Delphin, C., Grundwald, D., Khochbin, S. and Lawrence, J.J., 1992, Characterization of the tumor suppresor protein p53 as a protein kinase C substrate and a S100B-binding protein, Proc. Natl. Acad. Sci. USA 89, 11627–11631.PubMedCrossRefGoogle Scholar
  5. Berridge, M.J. and Irvine, R.F., 1989, Inositol phosphates and cell signalling, Nature 341, 197–204.PubMedCrossRefGoogle Scholar
  6. Brodersen, D.E., Etzerodt, M., Madsen, P., J.E., C., Thogersen, H.C., Nyborg, J. and Kjeldgaard, M., 1999a, EF-hands at atomic resolution: The structure fo human psoriasin (S100A7) solved by MAD phasing, Structure 6, 477–489.CrossRefGoogle Scholar
  7. Brodersen, D.E., Nyborg, J. and Kjeldgaard, M., 1999b, Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca-bound human psoriasin (S100A7) in the Zn-loaded and Zn-free states, Biochemistry 38, 1695–1704.PubMedCrossRefGoogle Scholar
  8. Carrier, F., Blake, M., Zimmer, D., Rustandi, R.R. and Weber, D.J., 1999, Abrogation of p53 transcriptional activity by the S100 calcium binding proteins: Possible implication in angiogenesis, Proc. of the AACR 40, 102.Google Scholar
  9. Chaudhuri, D., Horrocks, W.W., Amburgey, J.C. and Weber, D.J., 1997, Characterization of lanthanide ion binding to the EF hand protein S100b by luminescence spectroscopy, Biochemistry 36, 9674–9680.PubMedCrossRefGoogle Scholar
  10. Chiarugi, V., Cinelli, M. and Magnelli, L., 1998, Acetylation and phosphorylation of the carboxy-terminal domain of p53: Regulative significance, Oncology Res. 10, 55–57.Google Scholar
  11. Delphin, C., Ronjat, M., Deloulme, J.C., Garin, G., Debussche, L., Higashimoto, Y., Sakaguchi, K. and Baudier, J., 1999, Calcium-dependent interaction of S100B with the C-terminal domain of the tumor suppressor p53, J. Biol. Chem. 274, 10539–10544.PubMedCrossRefGoogle Scholar
  12. Donato, R., 1991, Perspectives in S-100 protein biology, Cell Calcium 12, 713–726.PubMedCrossRefGoogle Scholar
  13. Donato, R., 1999, Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type, Biochem. Biophys. Acta 1450, 191–231.PubMedCrossRefGoogle Scholar
  14. Drohat, A.C., Amburgey, J.C., Abildgaard, F., Starich, M.R., Baldisseri, D. and Weber, D.J., 1996, Solution structure of rat apo-S100B (ββ) as determined by NMR spectroscopy, Biochemistry 35, 11577–11588.PubMedCrossRefGoogle Scholar
  15. Drohat, A.C., Nenortas, E., Beckett, D. and Weber, D.J., 1997, Oligomerization state of S100B at nanomolar concentration determined by large-zone analytical gel filtration chromatography. Protein Sci. 6, 1577–1582.PubMedCrossRefGoogle Scholar
  16. Drohat, A.C., Baldisseri, D.M., Rustandi, R.R. and Weber, D.J., 1998, Solution structure of calcium-bound rat S100B (ββ) as determined by NMR spectroscopy, Biochemistry 37, 2729–2740.PubMedCrossRefGoogle Scholar
  17. Drohat, A.C., Tjandra, N., Baldisseri, D.M. and Weber, D.J., 1999, The use of dipolar couplings for determining the solution structure of rat apo-S100B(ββ), Protein Sci. 8, 800–809.PubMedCrossRefGoogle Scholar
  18. Garbuglia, M., Verzini, M., Rustandi, R.R., Osterloh, D., Weber, D.J., Gerke, V. and Donato, R., 1999, Role of the C-terminal extension in the interaction of S100A1 and GFAP, tubilin, S100A1-and S100B-inhibitory peptide, TRTK-12, and a peptide derived from p53, and the S100A1 inhibitory effect on GFAP polymerization, Biochem. Biophys. Res. Commun. 254, 36–41.PubMedCrossRefGoogle Scholar
  19. Giaccia, A.J. and Kastan, M.B., 1998, The complexity of p53 modulation: Emerging patterns from divergent signals, Genes and Develop. 12, 2973–2983.CrossRefGoogle Scholar
  20. Groves, P., Finn, B.E., Kuznicki, J. and Forsen, S., 1998, A model for target protein binding to calcium-activated S100 dimers, FEBS Lett. All, 175–179.Google Scholar
  21. Harris, N.L., Resnell, S.R. and Cohen, RE., 1994, Four helix bundle diversity in globular proteins, J. Mol. Biol. 236, 1356–1368.PubMedCrossRefGoogle Scholar
  22. Heizman, C.W., 1999, Ca2+-binding S100 proteins in the central nervous system, Neurochem. Res. 24, 1097–1100.CrossRefGoogle Scholar
  23. Hupp, T.R., Meek, D.W., Midgley, C.A. and Lane, D.P., 1992, Regulation of the specific DNA binding function of p53, Cell 71, 875–886.PubMedCrossRefGoogle Scholar
  24. Ilg, E.G., Schafer, B.W. and Heizmann, C.W., 1996, Expression pattern of S100 Ca2+-binding proteins in human tumors, Int. J. Cancer 68, 325–332.PubMedCrossRefGoogle Scholar
  25. Ivanenkov, V.V., Jamieson, G.A.J., Gruenstein, E. and Dimlich, R.V.W., 1995, Characterization of S100B binding epitiopes. Identification of a novel target, the actin capping protein, CapZ, J. Biol. Chem. 270, 14651–14658.PubMedCrossRefGoogle Scholar
  26. Kilby, P.M., Van Eldik, L.J. and Roberts, G.C.K., 1996, The solution structure of the bovine S100B protein dimer in the calcium-free state, Structure 4, 1041–1052.PubMedCrossRefGoogle Scholar
  27. Kligman, D. and Hilt, D., 1988, The S100 protein family, Trends Biochem. Sci. 13, 437–443.PubMedCrossRefGoogle Scholar
  28. Kretsinger, R.H., 1980, Structure and evolution of calcium-modulated proteins, CRC Crit. Rev. Biochem. 8, 119–174.PubMedCrossRefGoogle Scholar
  29. Landar, A., Hall, T.L., Cornwall, E.H., Correia, J.J., Drohat, A.C., Weber, D.J. and Zimmer, D.B., 1997, The role of cysteine residues in S100B dimerization and regulation of target protein activity, Biochim. Biophys. Acta 1343, 117–129.PubMedCrossRefGoogle Scholar
  30. Landar, A., Rustandi, R.R., Weber, D.J. and Zimmer, D.B., 1998, S100A1 utilizes different mechanisms for interacting with calcium-dependent and calcium independent target proteins, Biochemistry 37, 17429–17438.PubMedCrossRefGoogle Scholar
  31. Levine, A.J., 1997, p53, the cellular gatekeeper for growth and division, Cell 88, 323–331.PubMedCrossRefGoogle Scholar
  32. Maler, L., Potts, B.C.M. and Chazin, W.J., 1999, High resolution solution structure of apo-calcyclin and structural variations in the S100 family of calcium-binding proteins, J. Biomol. NMR 13, 233–247.PubMedCrossRefGoogle Scholar
  33. Matsumura, H., Shiba, T., Inoue, T., Harada, S. and Kai, Y., 1998, A novel mode of target recognition suggested by the 2.0 Å structure of holo S100B from bovine brain, Structure 6, 233–241.PubMedCrossRefGoogle Scholar
  34. McNutt, N.S., 1998, The S100 family of multipurpose calcium-binding proteins, J. Cut. Path. 25, 521–529.CrossRefGoogle Scholar
  35. Mueller, A., Bachi, T., Hochli, M., Schafer, B.W. and Heizmann, C.W., 1999, Subcellular distribution of S100 proteins in tumor cells and their relocation in response to calcium activation, Hist. Chem. Biol. 111, 453–459.CrossRefGoogle Scholar
  36. Osterloh, D., Ivanenkov, V.V. and Gerke, V., 1998, Hydrophobic residues in the C-terminal region of S100A1 are essential for target protein binding, but not for dimerization, Cell Calcium 24, 137–151.PubMedCrossRefGoogle Scholar
  37. Potts, B.C.M., Smith, J., Akke, M., Macke, T.J., Okazaki, K., Hidaka, H., Case, D.A. and Chazin, W.J., 1995, The structure of calcyclin reveals a novel homodimeric fold for S100 Ca-binding proteins, Nat. Struct. Biol. 2, 790–796.PubMedCrossRefGoogle Scholar
  38. Rety, S., Sopkaova, J., Renouard, M., Osterloh, D., Gerke, V., Tabaries, S., Russo-Marie, F. and Lewit-Bentley, A., 1999, The crystal structure of a complex of p11 with the annexin II N-terminal peptide, Nat. Struct. Biol. 6, 89–95.PubMedCrossRefGoogle Scholar
  39. Rubio, M.-P., von Deimling, A., Yandell, D.W., Wiestler, O.D., Gusella, J.F. and Louis, D.N., 1993, Accumulation of wild-type p53 protein in human astrocytomas, Cancer Res. 53, 3465–3467.PubMedGoogle Scholar
  40. Rustandi, R.R., Drohat, A.D., Baldisseri, D.M., Wilder, P.T and Weber, D.J., 1998, The Ca2+-dependent interaction of S100B (ββ) with a peptide derived from p53, Biochemistry 37, 1951–1960.PubMedCrossRefGoogle Scholar
  41. Rustandi, R.R., Baldisseri, D.M., Drohat, A.C. and Weber, D.J., 1999, Structural changes in the C-terminus of Ca-bound rat S100B(ββ) upon binding the a peptide derived from the C-terminal regulatory domain of p53, Protein Sci. 8, 1743–1751.PubMedCrossRefGoogle Scholar
  42. Rustandi, R.R., Baldisseri, D.M. and Weber, D.J., 2000, Structure of the negative regulatory domain of p53 bound to S100B(ββ), Nat. Struct. Biol. 7, 570–574.PubMedCrossRefGoogle Scholar
  43. Sakaguchi, K., Sakamoto, H., Lewis, M.S., Anderson, C.W., Erickson, J.W., Appela, E. and Xie, D., 1997, Phosphorylation of ser-392 stabilizes the tetramer formation of tumor suppressor protein p53, Biochemistry 36, 10117–10124.PubMedCrossRefGoogle Scholar
  44. Sastry, M., Ketchem, R.R., Crescenzi, O., Weber, C., Lubienski, M.J., Hidaka, H. and Chazin, W.J., 1998, The three-dimensional structure of Ca2+-bound calcyclin: Implications for Ca2+-signal transduction by S100 proteins, Structure 6, 223–231.PubMedCrossRefGoogle Scholar
  45. Schafer, B.W. and Heizmann, C.W., 1996, The S100 family of EF-hand calcium-binding proteins: Functions and pathology, Trends Biochem. Sci. 21, 134–140.PubMedGoogle Scholar
  46. Scotto, C., Deloulme, J.C., Rousseau, D., Chambaz, E. and Baudier, J., 1998, Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis, Mol. Cell. Biol. 18, 4272–4281.PubMedGoogle Scholar
  47. Scotto, C., Delphin, C., Deloulme, J.C. and Baudier, J., 1999, Concerted regulation of wild-type p53 nuclear accumulation and activation by S100B and calcium-dependent protein kinase C, Mol. Cell. Biol. 19, 7168–7180.PubMedGoogle Scholar
  48. Selivanova, G., Iotsova, V., Okan, I., Fritsche, M., Strom, M., Groner, B., Grafstrom, R.C. and Wiman, K.G., 1999, Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain, Nature Med. 3, 632–638.Google Scholar
  49. Sherbet, G.V. and Lakshmi, M.S., 1998, S100A4 (MTS1) calcium binding protein in cancer growth, invasion and metastasis, Anticancer Res. 18, 2415–2422.PubMedGoogle Scholar
  50. Sheu, F.-S., Huang, F.L. and Huang, K.-P., 1995, Differential responses of protein kinase C substrates (MARCKS, neuromodulin, and neurogranin) phosphorylation to calmodulin and S100, Arch. Biochem. Biophys. 316, 335–342.PubMedCrossRefGoogle Scholar
  51. Smith, S.R and Shaw, G.S., 1998, A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form, Structure 6, 211–222.PubMedCrossRefGoogle Scholar
  52. Strynadka, N.C.J., and James, M.N.G., 1989, Crystal structures of the helix-loop-helix calcium-binding proteins, Annu. Rev. Biochem. 58, 951–998.PubMedCrossRefGoogle Scholar
  53. Wilder, P.T., Rustandi, R.R., Drohat, A.C. and Weber, D.J., 1998, S100B(ββ) inhibits the protein kinase C-dependent phosphorylation of a peptide derived from p53 in a Ca2+-dependent manner, Protein Sci. 7, 794–798.PubMedCrossRefGoogle Scholar
  54. Yap, K.L., Ames, J.B., Swindells, M.B. and Ikura, M., 1999, Diversity of conformational states and changes within the EF-hand protein superfamily, Proteins: Struct. Fund. Genet. 15, 499–507.Google Scholar
  55. Youmell, M., Park, S.J., Basu, S. and Price, B.D., 1998, Regulation of the p53 protein by protein kinase C and protein kinase ζ, Biochem. Biophys. Res. Commun. 245, 514–518.PubMedCrossRefGoogle Scholar
  56. Zimmer, D.B., Cornwall, E.H., Landar, A. and Song, W., 1995, The S100 protein family: History, function, and expression, Brain Res. Bull. 37, 417–429.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • David J. Weber
    • 1
  • Richard R. Rustandi
    • 1
  • France Carrier
    • 1
  • Danna B. Zimmer
    • 2
  1. 1.Deparment of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Deparment of PharmacologyUniversity of South Alabama College of MedicineMobileUSA

Personalised recommendations