Advertisement

Calcium Signalling in Neurons Exemplified by Rat Sympathetic Ganglion Cells

  • S. J. Marsh
  • N. Wanaverbecq
  • A. A. Selyanko
  • D. A. Brown

Abstract

Calcium (Ca2+) is essential for neural function. The most obvious requirement is to trigger the release of transmitter when the action potential arrives at the axon terminals. However, Ca2+ can also affect neuronal function in other ways. The mechanisms for Ca2+ entry, release, sequestration and extrusion vary somewhat from one type of nerve cell to another, but follow certain principles in common. These can be helpfully illustrated with reference to neurons in the rat superior cervical sympathetic (SCG) ganglion. These are well-studied peripheral neurons, which are particularly convenient for simultaneous recording of membrane ion channel currents and intracellular Ca2+ changes using fluorescent indicators.

Keywords

Muscarinic Receptor Nicotinic Receptor Adrenal Chromaffin Cell Plasma Membrane Calcium ATPase Calcium Binding Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beech, DJ., Bernheim, L.,uyh Mathie, A. and Hille, B., 1991, Intracellular Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons, Proc. Natl Acad. Sci., USA 88, 652–656.PubMedCrossRefGoogle Scholar
  2. Benham, C.D., Evans, M.L. and McBain, C.J., 1992, Ca2+ efflux mechanisms following depolarization evoked calcium transients in cultured rat sensory neurones, J. Physiol. Lond. 455, 567–583.PubMedGoogle Scholar
  3. Blaustein, M.P. and Hodgkin, A.L., 1969, The effect of cyanide on the efflux of calcium from squid axons, J. Physiol. Lond. 200, 497–527.PubMedGoogle Scholar
  4. Blaustein, M.P. and Lederer, W.J., 1999, Sodium/calcium exchange: Its physiological implications, Physiol. Rev. 79, 763–854.PubMedGoogle Scholar
  5. Boehm, S. and Huck, S., 1996, Inhibition of N-type calcium channels: The only mechanism by which presynaptic α 2-autoreceptors control sympathetic transmitter release, Eur. J. Neurosci. 8, 1924–1931.PubMedCrossRefGoogle Scholar
  6. Bone, E.A., Fretten, P., Palmer, S., Kirk, C.J. and Michell, R.H., 1984, Rapid accumulation of inositol phosphates in isolated rat superior cervical ganglia exposed to V1-vasopressin and muscarinic cholinergic stimuli, Biochem. J. 221, 803–811.PubMedGoogle Scholar
  7. Brown, D.A., 1988, M currents, in Ion Channels, Vol. 1, T. Narahashi (ed.), Plenum, New York, pp. 55–99.CrossRefGoogle Scholar
  8. Brown, D.A. and Selyanko, A.A., 1985, Membrane currents underlying the cholinergic slow excitatory post-synaptic potential in the rat sympathetic ganglion, J. Physiol. 365, 365–387.PubMedGoogle Scholar
  9. Carafoli, E., 1987, Intracellular calcium homeostasis, Annu. Rev. Biochem. 56, 395–433.PubMedCrossRefGoogle Scholar
  10. Carafoli, E., 1994, Biogenesis: Plasma membrane calcium ATPase: 15 years of work on the purified enzyme, FASEB J. 8, 993–1002.PubMedGoogle Scholar
  11. Carafoli, E., 1997, Plasma membrane calcium pump: Structure, function and relationships, Basic. Res. Cardiol. 92(Suppl. 1), 59–61.PubMedCrossRefGoogle Scholar
  12. Carafoli, E. and Sauffer, T., 1994, The plasma membrane calcium pump: Functional domains, regulation of the activity, and tissue specificity of isoform expression, J. Neurobiol. 25, 312–324.PubMedCrossRefGoogle Scholar
  13. Cole, A.E. and Nicoll, R.A., 1983, Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells, Science 221, 1299–1301.PubMedCrossRefGoogle Scholar
  14. Covernton, P.J.O., Kojima, H., Sivilotti, L., Gibb, A.J. and Colquhoun, D., 1994, Comparison of neuronal nicotinic receptors in rat sympathetic neurones with subunit pairs expressed in Xenopus oocytes, J. Physiol. 481, 27–34.PubMedGoogle Scholar
  15. Cruzbianca, H., Koh, D.-S. and Hille, B., 1998, Bradykinin inhibits M-current via phospholipase C and Ca2+ release from InsP3-sensitive stores in rat sympathetic neurons, Proc. Nad. Acad. Sci., USA 95, 7151–7156.CrossRefGoogle Scholar
  16. Davies, P.J., Ireland, D.R. and McLachlan, E.M., 1996, Sources of Ca2+ for different Ca2+-activated K+ conductances in neurones of the rat superior cervical ganglion, J. Physiol. 495, 353–366.PubMedGoogle Scholar
  17. Delmas, P., Abogadie, F.C., Dayrell, M., Haley, J.E., Milligan, G., Caulfield, M.P., Brown, D.A. and Buckley, N.J., 1998, G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents, Eur. J. Neurosci. 10, 1654–1666.PubMedCrossRefGoogle Scholar
  18. del Rio, E., Bevilacqua, J.A., Marsh, S.J., Hallet, P.M. and Caulfield, M.R, 1999, Muscarinic M1 receptors activate phosphoinositide turnover and Ca2+ mobilization in rat sympathetic neurones, but this signalling pathway does not mediate M-current inhibition, J. Physiol. Lond. 520, 101–111.PubMedCrossRefGoogle Scholar
  19. Duchen, M.R., 1999, Contributions of mitochondria to animal physiology: From homeostatic sensor to calcium signalling and cell death, J. Physiol. Lond. 516, 1–17.PubMedCrossRefGoogle Scholar
  20. Endo, T. and Onaya, T., 1988, Immunohistochemical localization of parvalbumin in rat and monkey autonomic ganglia, J. Neurocytol. 17, 73–77.PubMedCrossRefGoogle Scholar
  21. Fierro, L. and Llano, I., 1996, High endogenous calcium buffering in Purkinje cells from rat cerebellar slices, J. Physiol. Lond. 496(3), 617–625.PubMedGoogle Scholar
  22. Foucart, S., Gibbons, S.J., Brorison, J.R. and Miller, R.J., 1995, Increases in [Ca2+] in adult rat sympathetic neurons are not dependent on intracellular Ca2+ pools, Am. J. Physiol. 268, C829–C837.PubMedGoogle Scholar
  23. Fujioka, Y., Komeda, M. and Matsuoka, S., 2000, Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes, J. Physiol. Lond. 523, 339–351.PubMedCrossRefGoogle Scholar
  24. Haley, J.E., Abogadie, F.C., Delmas, P., Dayrell, M., Vallis, Y., Milligan, G., Caulfield, M.P., Brown, D.A. and Buckley, N.J., 1998, The α subunit of Gq contributes to muscarinic inhibition of the M-type potassum current in sympathetic neurons, J. Neurosci. 18, 4521–4531.PubMedGoogle Scholar
  25. Hernandez-Cruz, A., Diaz-Munoz, M., Gomez-Chavaron, M., Canedo-Merino, R., Protti, D.A., Escobar, A.L., Sierralta, J. and Suarez-Isla, B.A., 1995, Properties of the rynaodine-sensitive release channels that underlie caffeine-induced Ca2+ mobilization from intracellular stores in mammalian sympathetic neurons, Eur. J. Neurosci. 7, 1684–1699.PubMedCrossRefGoogle Scholar
  26. Hernandez-Cruz, A., Escobar, A.L. and Jimenez, N., 1997, Ca2+-induced Ca2+ release phenomena in mammalian sympathetic neurons are critically dependent on the rate of rise of trigger Ca2+, J. Gen. Physiol. 109, 147–167.PubMedCrossRefGoogle Scholar
  27. Herrington, J., Park, Y.B., Babcock, D.F. and Hille B., 1996, Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells, Neuron 16, 219–228.PubMedCrossRefGoogle Scholar
  28. Hille, B., 1994, Modulation of ion channel function by G-protein-coupled receptors, Trends Neurosci. 17, 531–536.PubMedCrossRefGoogle Scholar
  29. Hirning, L.D., Fox, A.P., McLeskey, E.W., Olivera, B.M., Thayer, S.A., Miller, R.J. and Tsien, R.W., 1988, Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons, Science 239, 57–61.PubMedCrossRefGoogle Scholar
  30. Horwitz, J., Tsymbalow, S. and Perlman, R.L., 1984, Muscarine increases tyrosine-3-monooxyegnase activity and phospholipid metabolism in the superior cervical ganglion of the rat, J. Pharmacol. Exper. Ther. 239, 577–582.Google Scholar
  31. Hosseini, R., Benton, D.C., Haylett, D.G. and Moss, G.W.J., 1999, Cloning of an SK channels from rat sympathetic neurones, J. Physiol. Lond., 518P, 133P.Google Scholar
  32. Irving, A.J., Collingridge, G.L. and Schofield, G., 1992, Interactions between Ca2+ mobilizing mechanisms in cultured rat cerebellar granule cells, J. Physiol. 456, 667–680.PubMedGoogle Scholar
  33. Jones, S., Brown, D.A., Milligan, G., Willer, E., Buckley, N.J. and Caulfield, M.P., 1995, Bradykinin excites rat sympathetic neurons by inhibition of M current through a mechanism involving B2 receptors and Gαq/11, Neuron 14, 399–405.PubMedCrossRefGoogle Scholar
  34. Kawai, T. and Watanabe, M., 1986, Blockage of Ca-activated K-conductance by apamin in rat sympathetic neurones, Br. J. Pharmacol. 87, 225–232.PubMedCrossRefGoogle Scholar
  35. Kawai, T. and Watanabe, M., 1989, Effects of ryanodine on the spike after-hyperpolarization in sympathetic neurones of the rat superior cervical ganglion, Pflueg. Arch. 413, 470–475.CrossRefGoogle Scholar
  36. Knoepfel, T., Vranesic, I., Gaehwiler, B.H. and Brown, D.A., 1990, Muscarinic and beta-adrenergic depressioin of the slow Ca2+-activated potassium conductance in hippocampal CA3 pyramidal cells is not mediated by a reduction of depolarization-induced cytosolic Ca2+ transients, Proc. Natl. Acad. Sci., USA 87, 4083–4087.CrossRefGoogle Scholar
  37. Koh, D.-S. and Hille, B., 1997, Modulation by neurotransmitters of catecholamine secretion from sympathetic ganglion neurons detected by amperometry, Proc. Natl. Acad. Sci., USA 94, 1506–1511.PubMedCrossRefGoogle Scholar
  38. Larrabee, M.G., Klingman, J.D. and Leicht, W.S., 1963, Effects of temperature, calcium and activity on phospholipid metabolism in a sympathetic ganglion, J. Neurochem. 12, 1–13.CrossRefGoogle Scholar
  39. Lin, Z., Haus, S., Edgerton, J. and Lipscombe, D., 1997, Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain, Neuron 18, 153–166.PubMedCrossRefGoogle Scholar
  40. Llano, I., DiPolo, R. and Marty, A., 1994, Calcium-induced calcium release in cerebellar Purkinje cells, Neuron 12, 663–673.PubMedCrossRefGoogle Scholar
  41. Luetje, C.W. and Patrick, J., 1991, Both α-and β-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors, J. Neurosci. 11, 837–845.PubMedGoogle Scholar
  42. Marrion, N.V and Tavalin, S.J., 1998, Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons, Nature 395, 900–905.PubMedCrossRefGoogle Scholar
  43. Marsh, S.J. and Brown, D.A., 1991, Potassium currents contributing to action potential re-polarization in dissociated cultured rat superior cervical sympathetic neurones, Neurosci. Lett. 133, 298–302.PubMedCrossRefGoogle Scholar
  44. Marsh, S.J., Trouslard, J., Leaney, J.L. and Brown, D.A., 1995, Synergistic regulation of a neuronal chloride current by intracellular calcium and muscarinic receptor activation: A role for protein kinase C, Neuron 15, 729–737.PubMedCrossRefGoogle Scholar
  45. McGehee, D.S. and Role, L.W., 1995, Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons, Annu. Rev. Physiol. 57, 521–546.PubMedCrossRefGoogle Scholar
  46. Miller, R.J., 1991, The control of neuronal Ca2+ homeostasis. Prog. Neurobiol. 37, 255–285.PubMedCrossRefGoogle Scholar
  47. Neher, E. and Augustine, G.J., 1992, Calcium gradients and buffers in bovine chromaffin cells, J. Physiol. Lond. 450, 273–301.PubMedGoogle Scholar
  48. Palecek, J., Lips, M.B. and Keller, B.U., 1999, Calcium dynamics and buffering in motoneurones of the mouse spinal cord, J. Physiol. Lond. 520, 485–502.PubMedCrossRefGoogle Scholar
  49. Plummer, M.R., Logothetis, D.E. and Hess, P., 1989, Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons, Neuron 2, 1453–1463.PubMedCrossRefGoogle Scholar
  50. Przywara, D.A., Bhave, S.V., Chowdhury, P.S., Wkade, T.D. and Wakade, A.R., 1993, Sites of transmitter release and relation to intracellular Ca2+ in cultured sympathetic neurons, Neuroscience 52, 973–988.PubMedCrossRefGoogle Scholar
  51. Regan, L.J., Sah, D.W. and Bean, B.P., 1991, Ca2+ channels in rat central and peripheral neurons: High-threshold current resistant to dihydropyridine blockers and ω-conotoxin, Neuron 6, 269–280.PubMedCrossRefGoogle Scholar
  52. Robbins, J., Marsh, S.J. and Brown, D.A., 1993, On the mechanism of M-current inhibition by muscarinic ml receptors in DNA-transfected rodent neuroblastoma x glioma cells, J. Physiol. Lond. 469, 153–178.PubMedGoogle Scholar
  53. Rogers, M. and Dani, J.A., 1995, Comparison of quantitative calcium flux through NMDA, ATP and ACh receptor channels, Biophys. J. 68, 501–506.PubMedCrossRefGoogle Scholar
  54. Sacchi, O., Rossi, M.L. and Canella, R., 1995, The slow Ca2+-activated K+ current, IAHP, in the rat sympathetic neurone, J. Physiol. Lond. 483, 15–27.PubMedGoogle Scholar
  55. Sah, P. and McLachlan, E.M., 1991, Ca2+-activated K+ currents underlying the afterhyper-polarization in guinea pig vagal neurons: A role for Ca2+-activated Ca2+ release, Neuron 7, 257–264.PubMedCrossRefGoogle Scholar
  56. Sanchez-Vivas, M.V. and Gallego, R., 1994, Calcium-dependent chloride current induced by axotomy in rat sympathetic neurons, J. Physiol. Lond. 475, 391–400.Google Scholar
  57. Sanchez-Vivas, M.V., Valdeolmillos, M., Martinez, S. and Gallego, R., 1994, Axotomy-induced changes in Ca2+ homeostasis in rat sympathetic-ganglion cells, Eur. J. Neurosci. 6, 9–17.CrossRefGoogle Scholar
  58. Selyanko, A.A., 1996, Single apamin-sensitive, small conductance calcium-activated potassium channels (SKCa) in membrane patches from rat sympathetic neurones, J. Physiol Lond. 494P, 52P.Google Scholar
  59. Selyanko, A.A. and Brown, D.A., 1996, Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons, Neuron 16, 151–162.PubMedCrossRefGoogle Scholar
  60. Seto-Ohshima, A., Sano, M., Kitajima, S., Kawamura, N., Yamazaki, Y. and Nagata, Y, 1987, The effect of axotomy and denervation on calmodulin content in the superior cervical sympathetic-ganglion of the rat, Brain Res. 410, 292–298.PubMedCrossRefGoogle Scholar
  61. Sivilotti, L.G., McNeil, D.K., Lewis, T.M., Nassar, M.A., Schoepfer, R. and Colquhoun, D., 1997, Recombinant nicotinic receptors expressed in Xenopus oocytes do not resemble native rat sympathetic ganglion receptors in single-channel behaviour, J. Physiol. Lond. 500, 123–138.PubMedGoogle Scholar
  62. Smart, T.G., 1987, Single calcium-activated potassium channels recorded from cultured rat sympathetic neurones, J. Physiol Lond. 389, 337–360.PubMedGoogle Scholar
  63. Storm, J.F., 1990, Potassium currents in hippocampal pyramidal cells, Progr. Brain Res. 83, 161–187.CrossRefGoogle Scholar
  64. Stuenkel, E.L., 1994, Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophyseal nerve-endings, J. Physiol. Lond. 481, 251–271.PubMedGoogle Scholar
  65. Thayer, S.A., Hirning, L.D. and Miller, R.J., 1988, The role of caffeine-sensitive calcium stores in the regulation of the intracellular free calcium concentration in rat sympathetic neurons in vitro, Mol. Pharmacol. 34, 664–673.PubMedGoogle Scholar
  66. Tokimasa, T. and North, R.A., 1984, Calcium entry through acetylcholine-channels can activate potassium conductance in bullfrog sympathetic neurons, Brain Res. 295, 364–367.PubMedCrossRefGoogle Scholar
  67. Toth, P.T. and Miller, R.J., 1995, Calcium and sodium currents evoked by action potential waveforms in rat sympathetic neurones, J. Physiol. 485, 43–57.PubMedGoogle Scholar
  68. Toth, P.T., Bindokas, V.P., Bleakman, D., Colmers, W.F. and Miller, R.J., 1993, Mechanism of presynaptic inhibition by neuropeptide Y at sympathetic nerve terminals, Nature 364, 635–639.PubMedCrossRefGoogle Scholar
  69. Trouslard, J., Marsh, S.J. and Brown, D.A., 1993, Calcium entry through nicotinic receptor channels and calcium channels in cultured rat superior cervical ganglion cells, J. Physiol. Lond. 468, 53–71.PubMedGoogle Scholar
  70. Vernallis, A.B., Conroy, W.G. and Berg, D.K., 1995, Neurons assemble acetylcholine recept-ors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes, Neuron 10, 451–563.CrossRefGoogle Scholar
  71. Wang, H.-S., Pan, Z., Shi, W., Brown, B.S., Wymore, R.S., Cohen, I.S., Dixon, J.E. and McKinnon, D., 1998, KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the M-channel, Science 282, 1890–1893.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • S. J. Marsh
    • 1
  • N. Wanaverbecq
    • 1
  • A. A. Selyanko
    • 1
  • D. A. Brown
    • 1
  1. 1.Department of PharmacologyUniversity College LondonLondonUK

Personalised recommendations