Advertisement

The Epidermal Growth Factor Receptor and the Calcium Signal

  • Antonio Villalobo
  • María José Ruano
  • Paloma I. Palomo-Jiménez
  • Hongbing Li
  • José Martín-Nieto

Abstract

Among the multiple systems that become operative during the mitogenic activation of a cell there is an early signal mediated by calcium. Thus, the cytosolic concentration of this ubiquitous second messenger tarnsiently increases when a variety of mitogenic receptors that belong to the superfamily of receptors with tyrosine kinase activity are activated by their ligans (Rozengurt, 1986). Among these receptors is the epidermal growth factor receptor (EGFR/ErbB1), a 170 kDa plasma membrane glycoprotein that, alike other related members of the ErbB family, is involved in proliferation, differentation and even the control of apoptotic processes (Carpenter, 1987; Ullrich and Schlessinger, 1990; Alroy and Yarden, 1997). In this review we will analyze how the EGFR generates the calcium signal, the subsequent activation of diverse Ca2+-dependent systems, and the role that these systems play on the regulation and fate of the receptor.

Keywords

Epidermal Growth Factor Receptor Epidermal Growth Factor Human Epidermal Growth Factor Receptor Calcium Signal Tyrosine Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, T., Kadowaki, T., Nishida, E., Kadooka, T., Ogawara, H., Fukami, Y., Sakai, H., Takaku, F. and Kasuga, M., 1986, Substrate specificities of tyrosine-specific protein kinases toward cytoskeletal proteins in vitro, J. Biol. Chem. 261, 14797–14803.PubMedGoogle Scholar
  2. Alroy, I. and Yarden, Y, 1997, The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 410, 83–86.PubMedCrossRefGoogle Scholar
  3. Azzi, A., Boscoboinik, D. and Hensey, C, 1992, The protein kinase C family, Eur. J. Biochem. 208, 547–557.PubMedCrossRefGoogle Scholar
  4. Benaim, G., Cervino, V. and Villalobo, A., 1998, Comparative phosphorylation of calmodulin from trypanosomatids and bovine brain by calmodulin-binding protein kinases, Comp. Biochem. Physiol. Part C 120, 57–65.CrossRefGoogle Scholar
  5. Benguría, A. and Villalobo, A., 1993, Calmodulin and the epidermal growth factor receptor: A reciprocal regulation?, Bio-Reguladores 2, 74–85.Google Scholar
  6. Benguría, A., Hernández-Perera, O., Martínez-Pastor, M.T., Sacks, D.B. and Villalobo, A., 1994, Phosphorylation of calmodulin by the epidermal-growth-factor-receptor tyrosine kinase, Eur. J. Biochem. 224, 909–916.PubMedCrossRefGoogle Scholar
  7. Benguría, A., Martín-Nieto, J., Benaim, G. and Villalobo, A., 1995, Regulatory interaction between calmodulin and the epidermal growth factor receptor, Ann. N. Y. Acad. Sci. 766, 472–476.PubMedCrossRefGoogle Scholar
  8. Bierman, A.J., Koenderman, L., Tool, A.J. and de Laat, S.W., 1990. Epidermal growth factor and bombesin differ strikingly in the induction of early responses in Swiss 3T3 cells, J. Cell. Physiol. 142, 441–448.PubMedCrossRefGoogle Scholar
  9. Browaeys-Poly, E., Cailliau, K. and Vilain, J.P., 1998, Fibroblast and epidermal growth factor receptor expression in Xenopus oocytes displays distinct calcium oscillatory patterns, Biochim. Biophys. Acta 1404, 484–489.PubMedCrossRefGoogle Scholar
  10. Carpenter, G., 1987, Receptors for epidermal growth factor and other polypeptide mitogens, Annu. Rev. Biochem. 56, 881–914.PubMedCrossRefGoogle Scholar
  11. Cassel, D. and Glaser, L., 1982, Proteolytic cleavage of epidermal growth factor receptor: A Ca2+-dependent, sulfhydryl-sensitive proteolytic system in A431 cells, J. Biol Chem. 257, 9845–9848.PubMedGoogle Scholar
  12. Chang, C.-R, Kao, J.P.Y., Lazar, C.S., Walsh, B.J., Wells, A., Wiley, H.S., Gill, G.N. and Rosenfeld, M.G., 1991, Ligand-induced internalization and increased cell calcium are mediated via distinct structural elements in the carboxyl terminus of the epidermal growth factor receptor, J. Biol Chem. 266, 23467–23470.PubMedGoogle Scholar
  13. Chen, W.S., Lazar, CS., Lund, K.A., Welsh, J.B., Chang, C.-R., Walton, G.M., Der, C.J., Wiley, H.S., Gill, G.N. and Rosenfeld, M.G., 1989, Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation, Cell 59, 33–43.PubMedCrossRefGoogle Scholar
  14. Chernoff, J., Sells, M.A. and Li, H.C, 1984, Characterization of phosphotyrosyl-protein phosphatase activity associated with calcineurin, Biochem. Biophys. Res. Commun. 121, 141–148.PubMedCrossRefGoogle Scholar
  15. Cheyette, T.E. and Gross, D.J., 1991, Epidermal growth factor-stimulated calcium ion transients in individual A431 cells: Initiation kinetics and ligand concentration dependence, Cell Regul. 2, 827–840.PubMedGoogle Scholar
  16. Clandinin, T.R., DeModena, J.A. and Sternberg, P.W., 1998, Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans, Cell 92, 523–533.PubMedCrossRefGoogle Scholar
  17. Corti, C., LeClerc L’Hostis, E., Quadroni, M., Schmid, H., Durussel, Y., Cox, J., Hatt, P.D., James, P. and Carafoli, E., 1999, Tyrosine phosphorylation modulates the interaction of calmodulin with its target proteins, Eur. J. Biochem. 262, 790–802.PubMedCrossRefGoogle Scholar
  18. Countaway, J.L., McQuilkin, P., Girones, N. and Davis, R.J., 1990, Multisite phosphorylation of the epidermal growth factor receptor: Use of site-directed mutagenesis to examine the role of serine/threonine phosphorylationm, J. Biol. Chem. 265, 3407–3416.PubMedGoogle Scholar
  19. Countaway, J.L., Nairn, A.C. and Davis, R.J., 1992, Mechanism of desensitization of the epidermal growth factor receptor protein-tyrosine kinase, J. Biol Chem. 267, 1129–1140.PubMedGoogle Scholar
  20. Davis, R.J., 1988, Independent mechanisms account for the regulation by protein kinase C of the epidermal growth factor receptor affinity and tyrosine-protein kinase activity, J. Biol. Chem. 263, 9462–9469.PubMedGoogle Scholar
  21. De Frutos, T., Martín-Nieto, J. and Villalobo, A., 1997, Phosphorylation of calmodulin by permeabilized fibroblasts overexpressing the human epidermal growth factor receptor, Biol. Chem. 378, 31–38.PubMedGoogle Scholar
  22. Díez, J.A., Elvira, M. and Villalobo, A., 1995, Phosphorylation of connexin-32 by the epidermal growth factor receptor tyrosine kinase, Ann. N. Y. Acad. Sci. 766, 477–480.PubMedCrossRefGoogle Scholar
  23. Díez, J.A., Elvira, M. and Villalobo, A., 1998, The epidermal growth factor receptor tyrosine kinase phosphorylates connexin32, Mol. Cell Biochem. 187, 201–210.PubMedCrossRefGoogle Scholar
  24. Eguchi, S., Numaguchi, K., Iwasaki, H., Matsumoto, T., Yamakawa, T., Utsunomiya, H., Motley, E.D., Kawakatsu, H., Owada, K.M., Hirata, Y., Marumo, F. and Inagami, T., 1998, Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells, J. Biol. Chem. 273, 8890–8896.PubMedCrossRefGoogle Scholar
  25. Eiliget, K.A., Phelps, P.C. and Smith, M.W., 1996, Transforming growth factor beta modulation of the epidermal growth factor Ca2+ signal and c-Fos oncoprotein levels in A431 human epidermoid carcinoma cells, Cell Growth Differ. 7, 461–468.Google Scholar
  26. Enomoto, K., Cossu, M.F., Maeno, T., Edwards, C. and Oka, T., 1986, Involvement of the Ca2+-dependent K+ channel activity in the hyperpolarizing response induced by epidermal growth factor in mammary epithelial cells, FEBS Lett. 203, 181–184.PubMedCrossRefGoogle Scholar
  27. Feinmesser, R.L., Gray, K., Means, A.R. and Chantry, A., 1996, HER-2/c-erbB2 is phos-phorylated by calmodulin-dependent protein kinase II on a single site in the cytoplasmic tail at threonine-1172, Oncogene 12, 2725–2730.PubMedGoogle Scholar
  28. Feinmesser, R.L., Wicks, S.J., Taverner, C.J. and Chantry, A., 1999, Ca2+/calmodulin-dependent kinase II phosphorylates the epidermal growth factor receptor on multiple sites in the cytoplasmic tail and serine 744 within the kinase domain to regulate signal generation, J. Biol Chem. 274, 16168–16173.PubMedCrossRefGoogle Scholar
  29. Fenstermaker, R.A., Ciesielski, M.J. and Castiglia, G.J., 1998, Tandem duplication of the epidermal growth factor receptor tyrosine kinase and calcium internalization domains in A-172 glioma cells, Oncogene 16, 3435–3443.PubMedCrossRefGoogle Scholar
  30. Fleet, A., Ashworth, R., Kubista, H., Edwards, H., Bolsover, S., Mobbs, P. and Moss, S.E., 1999, Inhibition of EGF-dependent calcium influx by annexin VI is splice form-specific, Biochem. Biophys. Res. Commun. 260, 540–546.PubMedCrossRefGoogle Scholar
  31. Gates, R.E. and King, L.E., Jr., 1983, Proteolysis of the epidermal growth factor receptor by endogenous calcium-activated neutral protease from rat liver, Biochem. Biophys. Res. Commun. 113, 255–261.PubMedCrossRefGoogle Scholar
  32. Gates, R.E. and King, L.E., Jr., 1985, Different forms of the epidermal growth factor receptor kinase have different autophosphorylation sites, Biochemistry 24, 5209–5215.PubMedCrossRefGoogle Scholar
  33. Gilligan, A., Prentki, M., Glennon, C. and Knowles, B.B., 1988, Epidermal growth factor-induced increases in inositol trisphosphates, inositol tetrakisphosphates, and cytosolic Ca2+ in a human hepatocellular carcinoma-derived cell line, FEBS Lett. 233, 41–46.PubMedCrossRefGoogle Scholar
  34. Gregoriou, M., Willis, A.C., Pearson, M.A. and Crawford, C, 1994, The calpain cleavage sites in the epidermal growth factor receptor kinase domain, Eur. J. Biochem. 223, 455–464.PubMedCrossRefGoogle Scholar
  35. Himpens, B., de Smedt, H. and Casteels, R., 1993, Intracellular Ca2+ signaling induced by vasopressin, ATP, and epidermal growth factor in epithelial LLC-PK1 cells, Am. J. Physiol. 265, C966–C975.PubMedGoogle Scholar
  36. Hudson, P.L., Pedersen, W.A., Saltsman, W.S., Liscovitch, M., MacLaughlin, D.T., Donahoe, P.K. and Blusztajn, J.K., 1994, Modulation by sphingolipids of calcium signals evoked by epidermal growth factor, J. Biol Chem. 269, 21885–21890.PubMedGoogle Scholar
  37. Hughes, B.P., Crofts, J.N., Auld, A.M., Read, L.C. and Barritt, G.J., 1987, Evidence that a pertussis-toxin-sensitive substrate is involved in the stimulation by epidermal growth factor and vasopressin of plasma-membrane Ca2+ inflow in hepatocytes, Biochem. J. 248, 911–918.PubMedGoogle Scholar
  38. Hughes, A.R., Bird, G.S., Obie, J.F., Thastrup, O. and Putney, J.W., Jr., 1991, Role of inositol (l,4,5)trisphosphate in epidermal growth factor-induced Ca2+ signaling in A431 cells, Mol Pharmacol. 40, 254–262.PubMedGoogle Scholar
  39. Hunter, T., Ling, N. and Cooper, J.A., 1984, Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane, Nature 311, 480–483.PubMedCrossRefGoogle Scholar
  40. Kanemitsu, M.Y. and Lau, A.F., 1993, Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-O-tetradecanoylphorbol-13-acetate-sensitive protein kinase C: The possible involvement of mitogen-activated protein kinase, Mol. Biol. Cell 4, 837–848.PubMedGoogle Scholar
  41. Kuryshev, Y.A., Naumov, A.P., Avdonin, P.V. and Mozhayeva, G.N., 1993, Evidence for involvement of a GTP-binding protein in activation of Ca2+ influx by epidermal growth factor in A431 cells: Effects of fluoride and bacterial toxins, Cell Signal 5, 555–564.PubMedCrossRefGoogle Scholar
  42. Livneh, E., Dull, T.J., Berent, E., Prywes, R., Ullrich, A. and Schlessinger, J., 1988, Release of a phorbol ester-induced mitogenic block by mutation at Thr-654 of the epidermal growth factor receptor, Mol. Cell. Biol. 8, 2302–2308.PubMedGoogle Scholar
  43. Logsdon, C.D. and Williams, J.A., 1984, Intracellular Ca2+ and phorbol esters synergistically inhibit internalization of epidermal growth factor in pancreatic acini, Biochem. J. 223, 893–900.PubMedGoogle Scholar
  44. Lund, K.A., Lazar, CS., Chen, W.S., Walsh, B.J., Welsh, J.B., Herbst, J.J., Walton, G.M., Rosenfeld, M.G., Gill, G.N. and Wiley, H.S., 1990, Phosphorylation of the epidermal growth factor receptor at threonine 654 inhibits ligand-induced internalization and down-regulation, J. Biol Chem. 265, 20517–20523.PubMedGoogle Scholar
  45. Margolis, B., Rhee, S.G., Felder, S., Mervic, M., Lyall, R., Levitzki, A., Ullrich, A., Zilberstein, A. and Schlessinger, J., 1989, EGF induces tyrosine phosphorylation of phos-pholipase C-II: A potential mechanism for EGF receptor signaling, Cell 57, 1101–1107.PubMedCrossRefGoogle Scholar
  46. Martín-Nieto, J. and Villalobo, A., 1998, The human epidermal growth factor receptor contains a juxtamembrane calmodulin-binding site, Biochemistry 37, 227–236.PubMedCrossRefGoogle Scholar
  47. McManus, M.J., Lingle, W.L., Salisbury, J.L. and Maihle, N.J., 1997, A transformation-associated complex involving tyrosine kinase signal adapter proteins and caldesmon links v-erbB signaling to actin stress fiber disassembly, Proc. Natl Acad. Sci. USA 94, 11351–11356.PubMedCrossRefGoogle Scholar
  48. Medema, J.P., Sark, M.W., Backendorf, C. and Bos, J.L., 1994, Calcium inhibits epidermal growth factor-induced activation of p21ras in human primary keratinocytes, Mol. Cell. Biol 14, 7078–7085.PubMedGoogle Scholar
  49. Mikoshiba, K., 1993, Inositol 1,4,5-trisphosphate receptor, Trends Pharmacol. Sci 14, 86–89.PubMedCrossRefGoogle Scholar
  50. Mishra, S. and Hamburger, A.W., 1993, Role of intracellular Ca2+ in the epidermal growth factor induced inhibition of protein tyrosine phosphatase activity in a breast cancer cell line, Biochem. Biophys. Res. Commun. 191, 1066–1072.PubMedCrossRefGoogle Scholar
  51. Moolenaar, W.H., Aerts, R.J., Tertoolen, L.G.J. and de Laat, S.W., 1986, The epidermal growth factor-induced calcium signal in A431 cells, J. Biol. Chem. 261, 279–284.PubMedGoogle Scholar
  52. Morrison, P., Takishima, K. and Rosner, M.R., 1993, Role of threonine residues in regulation of the epidermal growth factor receptor by protein kinase C and mitogen-activated protein kinase, J. Biol. Chem. 268, 15536–15543.PubMedGoogle Scholar
  53. Morrison, P., Saltiel, A.R. and Rosner, M.R., 1996, Role of mitogen-activated protein kinase kinase in regulation of the epidermal growth factor receptor by protein kinase C, J. Biol. Chem. 271, 12891–12896.PubMedCrossRefGoogle Scholar
  54. Murasawa, S., Mori, Y., Nozawa, Y., Gotoh, N., Shibuya, M., Masaki, H., Maruyama, K., Tsutsumi, Y., Moriguchi, Y., Shibazaki, Y., Tanaka, Y., Iwasaki, T., Inada, M. and Matsub-ara, H., 1998, Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor, Circ. Res. 82, 1338–1348.PubMedCrossRefGoogle Scholar
  55. Nishibe, S., Wahl, M.I., Rhee, S.G. and Carpenter, G., 1989, Tyrosine phosphorylation of phospholipase C-II in vitro by the epidermal growth factor receptor, J. Biol. Chem. 264, 10335–10338.PubMedGoogle Scholar
  56. Nishibe, S., Wahl, M.I., Hernández-Sotomayor, S.M.T., Tonks, N.K., Rhee, S.G. and Carpenter, G., 1990, Increase of the catalytic activity of phospholipase C-γl by tyrosine phosphorylation, Science 250, 1253–1256.PubMedCrossRefGoogle Scholar
  57. Olsen, R., Santone, K., Melder, D., Oakes, S.G., Abraham, R. and Powis, G., 1988, An increase in intracellular free Ca2+ associated with serum-free growth stimulation of Swiss 3T3 fibroblasts by epidermal growth factor in the presence of bradykinin, J. Biol. Chem. 263, 18030–18035.PubMedGoogle Scholar
  58. Pallen, C.J., Valentine, K.A., Wang, J.H. and Hollenberg, M.D., 1985, Calcineurin-mediated dephosphorylation of the human placental membrane receptor for epidermal growth factor urogastrone, Biochemistry 24, 4727–4730.PubMedCrossRefGoogle Scholar
  59. Palomo-Jiménez, P.I., Hernández-Hernando, S., García-Nieto, R.M. and Villalobo, A., 1999, A method for the purification of phospho(Tyr)calmodulin free of non-phosphorylated calmodulin, Prot. Express. Purif. 16, 388–395.CrossRefGoogle Scholar
  60. Pandiella, A., Beguinot, L., Velu, T.J. and Meldolesi, J., 1988, Transmembrane signalling at epidermal growth factor receptors overexpressed in NIH 3T3 cells: Phosphoinositide hydrolysis, cytosolic Ca2+ increase and alkalinization correlate with epidermal-growth-factor-induced cell proliferation, Biochem. J. 254, 223–228.PubMedGoogle Scholar
  61. Peppelenbosch, M.P., Tertoolen, L.G.J., and de Laat, S.W., 1991, Epidermal growth factor-activated calcium and potassium channels, J. Biol. Chem. 266, 19938–19944.PubMedGoogle Scholar
  62. Peppelenbosch, M.P., Tertoolen, L.G.J., den Hertog, J. and de Laat, S.W., 1992, Epidermal growth factor activates calcium channels by phospholipase A2/5-lipoxygenase-mediated leukotriene C4 production, Cell 69, 295–303.PubMedCrossRefGoogle Scholar
  63. Peppelenbosch, M.P., Tertoolen, L.G.J., de Vries-Smits, A.M.M., Qiu, R.-G., M’Rabet, L., Sy-mons, M.H., de Laat, S.W. and Bos, J.L., 1996, Rac-dependent and-independent pathways mediate growth factor-induced Ca2+ influx, J. Biol. Chem. 271, 7883–7886.PubMedCrossRefGoogle Scholar
  64. Rosen, L.B. and Greenberg, M.E., 1996, Stimulation of growth factor receptor signal transduction by activation of voltage-sensitive calcium channels, Proc. Natl. Acad. Sci. USA 93, 1113–1118.PubMedCrossRefGoogle Scholar
  65. Rozengurt, E., 1986, Early signals in the mitogenic response, Science 234, 161–166.PubMedCrossRefGoogle Scholar
  66. San José, E., Benguría, A., Geller, P. and Villalobo, A., 1992, Calmodulin inhibits the epidermal growth factor receptor tyrosine kinase, J. Biol. Chem. 267, 15237–15245.PubMedGoogle Scholar
  67. Schalkwijk, C.G., Spaargaren, M., Defize, L.H., Verkleij, A.J., van den Bosch, H. and Boonstra, J., 1995, Epidermal growth factor (EGF) induces serine phosphorylation-dependent activation and calcium-dependent translocation of the cytosolic phospholipase A2, Eur. J. Biochem. 231, 593–601.PubMedCrossRefGoogle Scholar
  68. Shiraha, H., Glading, A., Gupta, K. and Wells, A., 1999, IP-10 inhibits epidermal growth factor-induced motility decreasing epidermal growth factor receptor-mediated calpain activity, J. Cell. Biol. 146, 243–254.PubMedGoogle Scholar
  69. Smith, L. and Smith, J.B., 1994, Regulation of sodium-calcium exchanger by glucocorticoids and growth factors in vascular smooth muscle, J. Biol. Chem. 269, 27527–27531.PubMedGoogle Scholar
  70. Soltoff, S.P., 1998, Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor: Phorbol ester or [Ca2+]i elevation substitute for receptor activation, J. Biol. Chem. 273, 23110–23117.PubMedCrossRefGoogle Scholar
  71. Stoscheck, C.M., Gates, R.E. and King, L.E., Jr., 1988, A search for EGF-elicited degradation products of the EGF receptor, J. Cell Biochem. 38, 51–63.PubMedCrossRefGoogle Scholar
  72. Strynadka, N.C.J., and James, M.N.G., 1989. Crystal structures of the helix-loop-helix calcium-binding proteins, Annu. Rev. Biochem. 58, 951–998.PubMedCrossRefGoogle Scholar
  73. Sugimoto, T., Stewart, S. and Guan, K.L., 1997, The calcium/calmodulin-dependent protein phosphatase calcineurin is the major Elk-1 phosphatase, J. Biol. Chem. 272, 29415–29418.PubMedCrossRefGoogle Scholar
  74. Theroux, S.J., Latour, D.A., Stanley, K., Raden, D.L. and Davis, R.J., 1992, Signal transduction by the epidermal growth factor receptor is attenuated by a COOH-terminal domain serine phosphorylation site, J. Biol. Chem. 267, 16620–16626.PubMedGoogle Scholar
  75. Tinhofer, I., Maly, K., Dietl, P., Hochholdinger, F., Mayr, S., Obermeier, A. and Grunicke, H.H., 1996, Differential Ca2+ signaling induced by activation of the epidermal growth factor and nerve growth factor receptors, J. Biol. Chem. 271, 30505–30509.PubMedCrossRefGoogle Scholar
  76. Todderud, G. and Carpenter, G., 1989, Epidermal growth factor: The receptor and its function, BioFactors 2, 11–15.PubMedGoogle Scholar
  77. Ullrich, A. and Schlessinger, J., 1990, Signal transduction by receptors with tyrosine kinase activity, Cell 61, 203–212.PubMedCrossRefGoogle Scholar
  78. Vega, Q.C., Cochet, C., Filhol, O., Chang, C.-P., Rhee, S.G. and Gill, G.N., 1992, A site of tyrosine phosphorylation in the C terminus of the epidermal growth factor receptor is required to activate phospholipase C, Mol. Cell. Biol. 12, 128–135.PubMedGoogle Scholar
  79. Villalobo, A. and Gabius, H.-J., 1998, Signaling pathways for transduction of the initial message of the glycocode into cellular responses, Acta Anat 161, 110–129.PubMedCrossRefGoogle Scholar
  80. Villalobo, A., Suju, M., Benaim, G., Palomo-Jiménez, P.I., Salerno, M., Martín-Nieto, J. and Benguría, A., 1997, Phosphocalmodulin activates the epidermal growth factor receptor, Tenth International Symposium on Calcium-Binding Proteins and Calcium Function in Health and Disease, Lund, Sweden, Abstracts, p. 78.Google Scholar
  81. Wahl, M.I., Daniel, T.O. and Carpenter, G., 1988, Antiphosphotyrosine recovery of phospholipase C activity after EGF treatment of A-431 cells, Science 241, 968–970.PubMedCrossRefGoogle Scholar
  82. Wang, Z., Danielsen, A.J., Maihle, N.J. and McManus, M.J., 1999, Tyrosine phosphorylation of caldesmon is required for binding to the Shc.Grb2 complex, J. Biol Chem. 274, 33807–33813.PubMedCrossRefGoogle Scholar
  83. Yeaton, R.W., Lipari, M.T. and Fox, C.F., 1983, Calcium-mediated degradation of epidermal growth factor receptor in dislodged A431 cells and membrane preparations, J. Biol. Chem. 258, 9254–9261.PubMedGoogle Scholar
  84. Zwick, E., Daub, H., Aoki, N., Yamaguchi-Aoki, Y., Tinhofer, I., Maly, K. and Ullrich, A., 1997, Critical role of calcium-dependent epidermal growth factor receptor transactivation in PC 12 cell membrane depolarization and bradykinin signaling, J. Biol. Chem. 272, 24767–24770.PubMedCrossRefGoogle Scholar
  85. Zwick, E., Wallasch, C., Daub, H. and Ullrich, A., 1999, Distinct calcium-dependent pathways of epidermal growth factor receptor transactivation and PYK2 tyrosine phosphorylation in PC12 cells, J. Biol. Chem. 214, 20989–20996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Antonio Villalobo
    • 1
  • María José Ruano
    • 1
  • Paloma I. Palomo-Jiménez
    • 1
  • Hongbing Li
    • 1
  • José Martín-Nieto
    • 2
  1. 1.Instituto de Investigaciones BiomédicasConsejo Superior de Investigaciones Científicas and Universidad Autónoma de MadridMadridSpain
  2. 2.División de Genética, Departamento de Fisiología, Genética y MicrobiologíaUniversidad de AlicanteAlicanteSpain

Personalised recommendations