Penta-EF-Hand (PEF) Proteins and Calsenilin/DREAM: Involvement of the New EF-Hand Calcium-Binding Proteins in Apoptosis and Signal Transduction

  • Masatoshi Maki


Calcium ions control a variety of cellular phenomena, including muscle contraction, adhesion, secretion, motility, growth, differentiation, gene expression, etc. Alterations in intracellular Ca2+ homeostasis are also commonly observed during apoptosis or programmed cell death by various stimuli such as glucocorticoid treatment, Interleukin-3 withdrawal, T cell receptor cross-linking, Fas/CD95 stimulation and oxidative stress (see reviews by McConkey and Orrenius, 1997, by Krebs, 1998, and references therein). The duration and extent of Ca2+ influx may determine whether cells survive, die by apoptosis or undergo necrosis. Ca2+-binding proteins are the mediators of the signals, and play pivotal roles in the above-mentioned cellular phenomena through a variety of different mechanisms.


Ryanodine Receptor PXXP Motif Dominant Negative Protein Prodynorphin Gene Downstream Regulatory Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annaert, W. and De Strooper, B., 1999, Presenilins: Molecular switches between proteolysis and signal transduction, Trends Neurosci. 22, 439–443.PubMedCrossRefGoogle Scholar
  2. Boyhan, A., Casimir, C.M., French, J.K., Teahan, C.G. and Segal, A.W., 1992, Molecular cloning and characterization of grancalcin, a novel EF-hand calcium-binding protein abundant in neutrophils and monocytes, J. Biol. Chem. 267, 2928–2933.PubMedGoogle Scholar
  3. Buxbaum, J.D., Choi, E.K., Luo, Y., Lilliehook, C., Crowley, A.C., Merriam, D.E. and Wasco, W., 1998, Calsenilin: A calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment, Nature Med. 4, 1177–1181.PubMedCrossRefGoogle Scholar
  4. Cao, L., Zhang, L., Ruiz-Lozano, P., Yang, Q., Chien, K.R., Graham, R.M. and Zhou, M., 1998, A novel putative protein-tyrosine phosphatase contains a BROl-like domain and suppresses Ha-ras-mediated transformation, J. Biol. Chem. 273, 21077–21083.PubMedCrossRefGoogle Scholar
  5. Carrión, A.M., Mellström, B. and Naranjo, J.R., 1998, Protein kinase A-dependent derepression of the human prodynorphin gene via differential binding to an intragenic silencer element, Mol. Cell. Biol. 18, 6921–6929.PubMedGoogle Scholar
  6. Carrión, A.M., Wolfgang, A.L., Ledo, F., Mellström, B. and Naranjo, J.R., 1999, DREAM is a Ca2+-regulated transcriptional repressor, Nature 398, 80–84.PubMedCrossRefGoogle Scholar
  7. Che, S., Weil, M.M., Etkin, L.D., Epstein, H. and Kuang, J., 1997, Molecular cloning of a splice variant of Caenorhabditis elegans YNK1, a putative element in signal transduction Biochim. Biophys. Acta 1354, 231–240.PubMedCrossRefGoogle Scholar
  8. Che, S., El-Hodiri, H.M., Wu, CF., Nelman-Gonzalez, M., Wei, M.M., Etkin, L.D., Clark, R.B. and Kuang, J., 1999, Identification and cloning of Xp95, a putative signal transduction protein in Xenopus oocytes, J. Biol. Chem. 274, 5522–5531.PubMedCrossRefGoogle Scholar
  9. Chen, B., Borinstein, S.C., Gillis, J., Sykes, V.W. and Bogler, O., 2000, The glioma-associated protein SETA interacts with AIPl/Alix and ALG-2 and modulates apoptosis in astrocytes, J. Biol. Chem. 275, 19275–19281.PubMedCrossRefGoogle Scholar
  10. Chi, S., Hiwasa, T., Maki, M., Sugaya, S., Nomura, J., Kita, K. and Suzuki, N., 1999, Suppression of okadaic acid-induced apoptosis by overexpression of calpastatin in human UVr-1 cells, FEBS Lett. 459, 391–394.PubMedCrossRefGoogle Scholar
  11. D’Adamio, L., Lacanà, E. and Vito, P., 1997, Functional cloning of genes involved in T-cell receptor-induced programmed cell death, Seminars Immunol. 9, 17–23.CrossRefGoogle Scholar
  12. Denison, S.H., Orejas, M. and Arst, H.N. Jr., 1995, Signaling of ambient pH in Aspergillus involves a cysteine protease, J. Biol. Chem. 270, 28519–28522.PubMedCrossRefGoogle Scholar
  13. Eastman, Q. and Grosschedl, R., 1999, Regulation of LEF-1/TCF transcription factors by Wnt and other signals, Curr. Opinion Cell Biol 11, 233–240.PubMedCrossRefGoogle Scholar
  14. Jekely, G. and Friedrich, P., 1999, The evolution of the calpain family as reflected in paralogous chromosome regions, J. Mol. Evol. 49, 272–281.PubMedCrossRefGoogle Scholar
  15. Kageyama, H., Shimizu, M., Tokunaga, K., Hiwasa, T. and Sakiyama, S., 1989, A partial cDNA for a novel protein which has a typical EF-hand structure, Biochim. Biophys. Acta 1008, 255–257.PubMedCrossRefGoogle Scholar
  16. Kang, D.E., Soriano, S., Frosch, M.P., Collins, T., Naruse, S., Sisodia, S.S., Leibowitz, G., Levine, F. and Koo, E.H., 1999, Presenilin 1 facilitates the constitutive turnover of ß-catenin: Differential activity of Alzheimer’s disease-linked PS1 mutants in the ß-catenin-signaling pathway, J. Neurosci. 19, 4229–4237.PubMedGoogle Scholar
  17. Kawasaki, H., Nakayama, S. and Kretsinger, R.H., 1998, Classification and evolution of EF-hand proteins, Biometals 11, 277–295.PubMedCrossRefGoogle Scholar
  18. Kitaura, Y., Watanabe, M., Satoh, H., Kawai, T., Hitomi, K. and Maki, M., 1999, Peflin, a novel member of the five-EF-hand-protein family, is similar to the Apoptosis-Linked Gene 2 (ALG-2) protein but possesses nonapeptide repeats in the N-terminal hydrophobic region, Biochem. Biophys. Res. Commun. 263, 68–75.PubMedCrossRefGoogle Scholar
  19. Krebs, J., 1998, The role of calcium in apoptosis, Biometals 11, 375–382.PubMedCrossRefGoogle Scholar
  20. Lacanà, E., Ganjei, K.J., Vito, P. and D’Adamio, L., 1997, Dissociation of apoptosis and activation of IL-1β-converting enzyme/Ced-3 proteases by ALG-2 and the truncated Alzheimer’s gene ALG-3. J. Immunol. 158, 5129–5135.PubMedGoogle Scholar
  21. Lin, G., Chattopadhyay, D., Maki, M., Wang, K.K.W., Carson, M., Jin, L., Yuen, P., Takano, E., Hatanaka, M., DeLucas, L.J. and Narayana, S.V.L., 1997, Crystal structure of calcium bound domain VI of calpain at 1.9Å resolution and its role in enzyme assembly, regulation, and inhibitor binding, Nature Struct. Biol. 4, 539–547.PubMedCrossRefGoogle Scholar
  22. Lo, K.W.-H., Zhang, Q., Li, M. and Zhang, M., 1999, Apoptosis-linked gene product ALG-2 is a new member of the calpain small subunit subfamily of Ca2+-binding proteins, Biochem. 38, 7498–7508.CrossRefGoogle Scholar
  23. Maki, M., 2000, Roles of ALG-2 and its interacting protein in apoptosis and signal transduction, Electr. J. Pathol. Histol. 6, 001–08.Google Scholar
  24. Maki, M., Narayana, S.V.L. and Hitomi, K., 1997, A growing family of the Ca2+-binding proteins with five EF-hand motifs, Biochem. J. 328, 718–720.PubMedGoogle Scholar
  25. Maki, M., Yamaguchi, K., Kitaura, Y., Satoh, H. and Hitomi, K., 1998, Calcium-induced exposure of a hydrophobic surface of mouse ALG-2, which is a member of the penta-EF-hand protein family, J. Biochem. 124, 1170–1177.PubMedCrossRefGoogle Scholar
  26. McConkey, D.J. and Orrenius, S., 1997, The role of calcium in the regulation of apoptosis, Biochem. Biophys. Res. Commun. 239, 357–366.PubMedCrossRefGoogle Scholar
  27. McConkey, D.J., Hartzell, P., Amador-Perez, J.F., Orrenius, S. and Jondal, M., 1989, Calcium-dependent killing of immature thymocytes by stimulation via the CD3/T cell receptor complex, J. Immunol. 143, 1801–1806.PubMedGoogle Scholar
  28. Meyers, M.B., Puri, T.S., Chien, A.J., Gao, T., Hsu, P.H., Hosey, M.M. and Fishman, G.I., 1998, Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels, J. Biol. Chem. 273, 18930–18935.PubMedCrossRefGoogle Scholar
  29. Missotten, M., Nichols, A., Rieger, K. and Sadoul, R., 1999, Alix, a novel mouse protein undergoing calcium-dependent interaction with the apoptosis-linked-gene 2 (ALG-2) protein, Cell Death Diff. 6, 124–129.CrossRefGoogle Scholar
  30. Monteiro, M.J. and Stabler, S., 2000, Genetic factors and the role of calcium in Alzheimer’s disease pathogenesis, this book.Google Scholar
  31. Narumiya, S., Ishizaki, T. and Watanabe, N., 1997, Rho effectors and reorganization of actin cytoskeleton, FEBS Lett. 410, 68–72.PubMedCrossRefGoogle Scholar
  32. Negrete-Urtasun, S., Denison, S.H. and Arst, H.N. Jr., 1997, Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs, J. Bact. 179, 1832–1835.PubMedGoogle Scholar
  33. Nickas, M.E. and Yaffe, M.P., 1996, BROl, a novel gene that interacts with components of the Pkclp-mitogen-activated protein kinase pathway in Saccharomyces cerevisiae, Mol Cell. Biol 16, 2585–2593.PubMedGoogle Scholar
  34. Ono, Y., Sorimachi, H. and Suzuki, K., 1998, Structure and physiology of calpain, an enigmatic protease, Biochem. Biophys. Res. Commun. 245, 289–294.PubMedCrossRefGoogle Scholar
  35. Pack-Chung, E., Meyers, M.B., Pettngell, W.P., Moir, R.D., Brownawell, A.M., Cheng, L., Tanzi, R.E. and Kim, T.W., 2000, Presenilin 2 interacts with sorcin, a modulator of the ryanodine receptor, J. Biol Chem. 275, 14440–14445.PubMedCrossRefGoogle Scholar
  36. Passer, B.J., Pellegrini, L., Vito, P., Ganjei, J.K. and D’Adamio, L., 1999, Interaction of Alzheimer’s presenilin-1 and presenilin-2 with BcI-Xl-A potential role in modulating the threshold of cell death, J. Biol. Chem. 274, 24007–24013.PubMedCrossRefGoogle Scholar
  37. Selkoe, D.J., 1998, The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease, Trends Cell Biol 8, 447–453.PubMedCrossRefGoogle Scholar
  38. Shinozaki, K., Maruyama, K., Kume, H., Tomita, T., Saido, T.C., Iwatsubo, T. and Obata, K., 1998, The presenilin 2 loop domain interacts with the μ-calpain C-terminal region, Int. J. Mol Med. 1, 797–799.PubMedGoogle Scholar
  39. Shumway, S.D., Maki, M. and Miyamoto, S., 1999, The PEST domain of Iκ Bα is necessay and sufficient for in vitro degradation by μ-calpain, J. Biol Chem. 274, 30874–30881.PubMedCrossRefGoogle Scholar
  40. Squier, M.K., Sehnert, A.J., Sellins, K.S., Malkinson, A.M., Takano, E. and Cohen, J.J., 1999, Calpain and calpastatin regulate neutrophil apoptosis, J. Cell. Physiol. 178, 311–319.PubMedCrossRefGoogle Scholar
  41. Takano, E., Ma, H., Yang, H.Q., Maki, M. and Hatanaka, M., 1995, Preference of calcium-dependent interactions between calmodulin-like domains of calpain and calpastatin subdomains, FEBS Lett. 362, 93–97.PubMedCrossRefGoogle Scholar
  42. Takashima, A., Murayama, M., Murayama, O., Kohno, T., Honda, T., Yasutake, K., Nihonmatsu, N., Mercken, M., Yamaguchi, H., Sugihara, S. and Wolozin, B., 1998, Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau, Proc. Natl Acad. Sci. USA 95, 9637–9641.PubMedCrossRefGoogle Scholar
  43. Valdivia, H.H., 1998, Modulation of intracellular Ca2+ levels in the heart by sorcin and FKBP12, two accessory proteins of ryanodine receptors, Trends Pharmacol. Sci. 19, 479–482.PubMedCrossRefGoogle Scholar
  44. Venn, M.K. and Conway, E.L., 1998. Localization of mRNA for the apoptosis-linked gene ALG-2 in young and aged rat brain, Neuroreport 9, 1981–1985.PubMedCrossRefGoogle Scholar
  45. Vito, P., Wolozin, B., Ganjei, J.K., Iwasaki, K., Lacanà, E. and D’Adamio, L., 1996a, Requirement of the familial Alzheimer’s disease gene PS2 for apoptosis. Opposing effect of ALG-3, J. Biol. Chem. 271, 31025–31028.PubMedCrossRefGoogle Scholar
  46. Vito, P., Lacanà, E. and D’Adamio, L., 1996b, Interfering with Apoptosis: Ca2+-binding protein ALG-2 and Alzheimer’s disease gene ALG-3, Science 271, 521–525.PubMedCrossRefGoogle Scholar
  47. Vito, P., Ghayur, T. and D’Adamio, L., 1997, Generation of anti-apoptotic presenilin-2 polypeptides by alternative transcription, proteolysis, and caspase-3 cleavage, J. Biol. Chem. 272, 28315–28320.PubMedCrossRefGoogle Scholar
  48. Vito, P., Pellegrini, L., Guiet, C. and D’Adamio, L., 1999, Cloning of AIPI, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction, J. Biol. Chem. 274, 1533–1540.PubMedCrossRefGoogle Scholar
  49. Watanabe, G., Saito, Y., Madaule, P., Ishizaki, T., Fujisawa, K., Morii, N., Mukai, H., Ono, Y., Kakizuka, A. and Narumiya, S., 1996, Protein kinase N(PKN) and Rho-related protein rhophilin as targests of small GTPase Rho, Science 271, 645–649.PubMedCrossRefGoogle Scholar
  50. Wolozin, B., Iwasaki, K., Vito, P., Ganjei, J.K., Lacanà, E., Sunderland, T., Zhao, B., Kusiak, J.W., Wasco, W. and D’Adamio, L., 1996, Participation of presenilin 2 in apoptosis: Enhanced basal activity conferred by an Alzheimer mutation, Science 214, 1710–1713.CrossRefGoogle Scholar
  51. Zhang, Z., Hartmann, H., Do, V.M., Abramowski, D., Sturchler-Pierrat, C., Staufenbiel, M., Sommer, B., van de Wetering, M., Clevers, H., Saftig, P., De Strooper, B., He, X. and Yankner, B.A., 1998, Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis, Nature 395, 698–702.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Masatoshi Maki
    • 1
  1. 1.Department of Applied Molecular Biosciences, Graduate School of Bioagricultural SciencesNagoya UniversityJapan

Personalised recommendations