Calcium Inhibition of Cytoplasmic Streaming

  • Hozumi Kawamichi
  • Akio Nakamura
  • Kazuhiro Kohama


Cytoplasmic streaming is commonly observed in plant cells, where organelles associated with myosin move along the actin cables that run beneath the cell membrane. The driving force for the streaming is produced by the interaction of myosin with actin in a similar way to muscle contraction. In muscle cells, cytoplasmic Ca2+ concentration ([Ca2+] i ) is mostly kept at low levels, i.e., submicromolar levels. When the cell is excited, [Ca2+] i increases up to micromolar levels. The increase in [Ca2+] i , causes the actin-myosin interaction so that the muscle contracts. When [Ca2+] i returns to submicromolar levels, the interaction is abolished and the muscle relaxes (Ebashi and Endo, 1968).


Light Chain Actin Filament Regulatory Light Chain Cytoplasmic Streaming Physarum Polycephalum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, F. and Wohlfarth-Bottermann, K.-E., 1986a, Reactivation of cell-free models of endoplasmic drops from Physarum polycephalum after glycerol extraction at low ionic strength, Eur. J. Cell Biol. 40, 135–138.PubMedGoogle Scholar
  2. Achenbach, F. and Wohlfarth-Bottermann, K.-E., 1986b, Successive contraction-relaxation cycles experimentally induced in cell-free models of Physarum polycephalum, Eur. J. Cell Biol. 42, 111–117.Google Scholar
  3. Cheney, R.E., O’Shea, M.K., Heuser, J.E., Coelho, M.V., Wolenski, J.S. and Mooseker, M.S., 1993, Brain myosin-V is a two-headed unconventional myosin with motor activity, Cell 75, 13–23.PubMedGoogle Scholar
  4. Collins, J.H. and Korn, E.D., 1981, Purification and characterization of actin-activatable, Ca2+-sensitive myosin II from Acanthamoeba, J. Biol. Chem. 256, 2586–2595.PubMedGoogle Scholar
  5. Collins, K., Sellers, J.R. and Matsudaira, P., 1990, Calmodulin dissociation regulates brush border Myosin I (110-KD-Calmodulin) mechanochemical activity in vitro, J. Cell. Biol. 110, 1137–1147.PubMedCrossRefGoogle Scholar
  6. Ebashi, S. and Endo, M., 1968, Calcium ion and muscle contraction, Progr. Biophys. Mol. Biol 18, 123–183.CrossRefGoogle Scholar
  7. Fromherz, S. and Szent-Gyorgyi, A.G., 1995, Role of essential light chain EF hand domains in clacium binding and regulation of scallop myosin, Proc. Natil. Acad. Sci. USA 92, 7652–7656.CrossRefGoogle Scholar
  8. Furuhashi, K. and Hatano, S., 1989, A fragmin-like protein from Physarumpolycephalum that severs F-actin and caps the barbed end of F-actin in a Ca2+-sensitive way, J. Biochem. 106, 311–318.PubMedGoogle Scholar
  9. Furuhashi, K. and Hatano, S., 1990, Control of actin filament length by phosphorylation of fragmin-actin complex, J. Cell. Biol. 111, 1081–1087.PubMedCrossRefGoogle Scholar
  10. Furuhashi, K. and Hatano, S., 1992, Actin kinase: A protein kinase that phosphorylates actin of fragmin-actin complex, J. Biochem. 111, 366–370.PubMedGoogle Scholar
  11. Furuhashi, K., Hatano, S., Ando, S., Nishizawa, K. and Inagaki, M., 1992, Phosphorylation by actin kinase of pointed end-domain on the actin molecule, J. Biol Chem. 267, 9326–9330.PubMedGoogle Scholar
  12. Gassner, D., Shraideh, Z. and Wohlfarth-Bottermann, K.E., 1985, A giant titin-like protein in Physarum polycephalum: Evidence for its candidacy as a major component of an elastic cytoskeletal superthin filament lattice, Eur. J. Cell Biol. 37, 44–62.Google Scholar
  13. Gettemans, J., De Ville, Y., Vandekerckhove, J. and Waelkens, E., 1992, Physarum actin is phosphorylated as the actin-fragmin complex at residues Thr203 and Thr202 by a specific 80 kDa kinase, EMBO J. 11, 3185–3191.PubMedGoogle Scholar
  14. Gettemans, J., De Ville, Y., Vandekerckhove, J. and Waelkens, E., 1993, Purification and partial amino acid sequence of the actin-fragmin kinase from Physarum polycephalum, Eur. J. Biochem. 214, 111–119.PubMedCrossRefGoogle Scholar
  15. Harada, Y., Noguchi, A., Kishino, A. and Yanagida, T., 1987, Sliding movement of single actin filaments on one-headed myosin filaments, Nature 326, 805–808.PubMedCrossRefGoogle Scholar
  16. Hasegawa, T., Takahashi, S., Hayashi, H. and Hatano, S., 1980, Fragmin: A calcium ion sensitive regulatory factor on the formation of actin filaments, Biochemistry 19, 2677–2683.PubMedCrossRefGoogle Scholar
  17. Hatano, S., 1973, Contractile proteins from the myxomycete plasmodium, Adv. Biophys. 5, 143–176.PubMedGoogle Scholar
  18. Hinssen, H., 1981a, An actin-modulating protein from Physarum polycephalum. I. Isolation and purification, Eur. J. Cell Biol 23, 225–233.PubMedGoogle Scholar
  19. Hinssen, H., 1981b, An actin-modulating protein from Physarum polycephalum. II. Ca++-dependence and other properties, Eur. J. Cell Biol 23, 234–240.PubMedGoogle Scholar
  20. Ishigami, M., Yoshiyama, S. and Furuhashi, K., 1996, Calcium waves corresponding to the contraction-relaxation cycle of Physarum polycephalum, Cell Struct. Funct. 21, 628 (Abstract).Google Scholar
  21. Ishikawa, R., Okagaki, T., Higashi-Fujime, S. and Kohama, K., 1991, Stimulation of the interaction between actin and myosin by Physarum caldesmon-line protein and smooth muscle caldesmon, J. Biol Chem. 266, 21784–21790.PubMedGoogle Scholar
  22. Ishikawa, R., Okagaki, T. and Kohama, K., 1992, Regulation by Ca2+-calmodulin of the actin-bundling activity of Physarum 210-kDa protein, J. Muscle Res. Cell Motil. 13, 321–328.PubMedCrossRefGoogle Scholar
  23. Ishikawa, R., Sasaki, Y., Nakamura, A., Takagi, T. and Kohama, K., 1995, Purification of an ATP-dependent actin-binding protein from a lower eukaryote, Physarum polycephalum, Biochem. Biophys. Res. Commun. 212, 347–352.PubMedCrossRefGoogle Scholar
  24. Itano, N. and Hatano, S., 1991, F-actin bundling protein from Physarum polycephalum: Purification and its capacity for co-bundling of actin filaments and microtubules, Cell Motil. Cytoskel. 19, 244–254.CrossRefGoogle Scholar
  25. Jancso, A. and Szent-Gyorgyi, A.G., 1994, Regulation of scallop myosin by the regulatory light chain depends on a single glycine residere, Proc. Natl. Acad. Sci. USA 91, 8762–8766.PubMedCrossRefGoogle Scholar
  26. Kamiya, N., 1981, Physical and chemical basis of cytoplasmic streaming, Annu. Rev. Plant Physiol. 32, 205–236.CrossRefGoogle Scholar
  27. Kellermayer, M.S. and Granzier, H.L., 1996, Calcium-dependent inhibition of in vitro thin-filament motility by native titin, FEBS Lett. 380, 281–286.PubMedCrossRefGoogle Scholar
  28. Kendrick-Jones, J., Lehman, W. and Szent-Gyorgyi, A.G., 1970, Regulation in molluscan muscles, J. Mol. Biol. 54, 313–326.PubMedCrossRefGoogle Scholar
  29. Kikuyama, M. and Tazawa, M., 1982, Ca2+ ion reversibly inhibits the cytoplasmic streaming after K+ induced cessation, Protoplasma 113, 241–243.CrossRefGoogle Scholar
  30. Kishimoto, U. and Akahori, H., 1959. Protoplasmic streaming of an internodal cell of Nitella flexilis, J. Gen. Physiol. 42, 1167–1183.PubMedCrossRefGoogle Scholar
  31. Kobayashi, T., Takagi K., Konishi, K., Hamada, Y., Kawaguchi, M. and Kohama, K., 1988, Amino acid sequence of the calcium-binding light chain of myosin from the lower eukaryote, Physarum polycephalum, J. Biol. Chem. 263, 305–313.PubMedGoogle Scholar
  32. Kohama, K., 1981, Ca-dependent inhibitory factor for the actin-myosin-ATP interaction of Physarum polycephalum, J. Biochem. 90, 1829–1832.PubMedGoogle Scholar
  33. Kohama, K., 1990, Inhibitory mode for Ca2+ regulation, Trends Pharmacol. Sci. 11, 433–435.PubMedCrossRefGoogle Scholar
  34. Kohama, K. and Kendrick-Jones, J., 1986, The inhibitory Ca2+-regulation of the actin-activated Mg-ATPase activity of myosin from Physarum polycephalum plasmodia, J. Biochem. 99, 1433–1446.PubMedGoogle Scholar
  35. Kohama, K. and Kohama, T., 1984, Myosin confers inhibitory Ca2+-sensitivity on actin-myosin-ATP interaction of Physarum polycephalum under physiological conditions, Proc. Jpn. Acad. 60B, 435–439.Google Scholar
  36. Kohama, K. and Shimmen, T., 1985, Inhibitory Ca2+-control of movement of beads coated with Physarum myosin along actin-cables in Chara internodal cells, Protoplasma 129, 88–91.Google Scholar
  37. Kohama, K., Kobayashi, K. and Mitani, S., 1980, Effects of Ca ion and ADP on superprecipitation of myosin B from slime mold, Physarum polycephalum, Proc. Jpn. Acad. 56B, 591–596.CrossRefGoogle Scholar
  38. Kohama, K., Uyeda, T.Q.P., Takano-Ohmuro, H., Tanaka, T., Yamaguchi, T., Maruyama, K. and Kohama, T., 1985, Ca2+-binding light chain of Physarum myosin confers inhibitory Ca2+-sensitivity on actin-myosin-ATP interaction via actin, Proc. Jpn. Acad. 61B, 501–505.Google Scholar
  39. Kohama, K., Oosawa, M., Ito, T. and Maruyama, K., 1988a, Physarum myosin light chain interacts with actin in a Ca2+-dependent manner, J. Biochem. 104, 995–998.PubMedGoogle Scholar
  40. Kohama, K., Sohda, M., Murayama, K. and Okamoto, Y, 1988b, Domain structure of Physarum myosin heavy chain, Protoplasma (Suppl. 2), 37–47.Google Scholar
  41. Kohama, K., Kohno, T., Okagaki, T. and Shimmen, T., 1991a, Role of actin in the myosin-linked Ca2+-regulation of ATP-dependent interaction between actin and myosin of a lower eukaryote, Physarum polycephalum, J. Biochem. 110, 508–513.PubMedGoogle Scholar
  42. Kohama, K., Okagaki, T., Takano-Ohmuro, H. and Ishikawa, R., 1991b, Characterization of calcium-binding light chain as a Ca2+-receptive subunit of Physarum myosin, J. Biochem. 110,566–570.PubMedGoogle Scholar
  43. Kohama, K., Ishikawa, R. and Okagaki, T., 1992, Calcium inhibition of Physarum actomyosin system: Myosin-linked and actin-linked natures, in Calcium Inhibiton, K. Kohama (ed.), Japan Sci. Soc. Press, Tokyo/CRC Press, Boca Raton, pp. 91–107.Google Scholar
  44. Kohama, K., Ye, L.-H. and Nakamura, A., 1993, Calcium-binding proteins that are involved in the calcium inhibition of the actomyosin system of a lower eukaryote, Physarum polycephalum, Biomed. Res. 14(Suppl. 2), 57–62.Google Scholar
  45. Kohama, K., Ishikawa, R. and Ishigami, M., 1998, Large scale culture of Physarum: A simple way of growing plasmodia to purify actomyosin and myosin, in Cell Biology Hand Book, J.E. Celis (ed.), 2nd edn., Vol. 1, Academic Press, San Diego, pp. 466–471.Google Scholar
  46. Kohno, T. and Shimmen T., 1988a, Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+, J. Cell Biol 106, 1539–1543.PubMedCrossRefGoogle Scholar
  47. Kohno, T. and Shimmen T., 1988b, Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes, J. Cell Sci. 91, 501–509.Google Scholar
  48. Kretsinger, R.H., 1980, Structure and evolution of calcium-modulated proteins, CRC Crit. Rev. Biochem. 8, 119–174.PubMedCrossRefGoogle Scholar
  49. Kron, S.J. and Spudich, J.A., 1986, Fluorescent actin filaments move on myosin fixed to a glass surface, Proc. Natl Acad. Sci. USA 83, 6272–6276.PubMedCrossRefGoogle Scholar
  50. Kuczmarski, E.R. and Spudich, J.A., 1980, Regulation of myosin self-assembly: Phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments, Proc. Natl. Acad. Sci. USA 77, 7292–7296.PubMedCrossRefGoogle Scholar
  51. Kwon, H., Goodwin, E.B., Nyitray, L., Berliner, E., O’Neall-Hennessey, E., Medandri, F.D. and Szent-Gyorgyi, A.G., 1990, Isolation of the regulatory domain of scallop myosin: Role of the essential light chain in calcium binding, Proc. Natl Acad. Sci. USA 87, 4771–4775.PubMedCrossRefGoogle Scholar
  52. Laroche, A., Lemieux, G. and Pollotta, D., 1989, The nucleotide sequence of a development-ally regulated cDNA for Physarum polycephalum, Neucleic Acids Res. 17, 10502.CrossRefGoogle Scholar
  53. Lin, Y., Ishikawa, R., Okagaki, T., Ye, L.-H. and Kohama, K., 1994, Stimulation of the ATP-dependent interaction between actin and myosin by a myosin-binding fragment of smooth muscle caldesmon, Cell Motil. Cytoskel. 29, 250–258.CrossRefGoogle Scholar
  54. Maruta, H., Baltes, W., Dieter, P., Marme, D. and Gerisch, G., 1983a, Myosin heavy chain kinase inactivated by Ca2+/calmodulin from aggregating cells of Dictyostelium discoideum, EMBO J 2, 535–542.PubMedGoogle Scholar
  55. Maruta, H., Isenberg, G., Schreckenbach, T., Hallmann, H., Risse, G., Shibayama, T. and Hesse, J., 1983b, Ca2+-dependent actin-binding phosphoprotein in Physarum polycephalum. I. Ca2+/actin-dependent inhibition of its phosphorylation, J. Biol Chem. 258, 10144–10150.PubMedGoogle Scholar
  56. Maruyama, K., Natori, R. and Nonomura, Y, 1976, New elastic protein from muscle, Nature (London) 262, 58–59.PubMedCrossRefGoogle Scholar
  57. Nakamura, A. and Kohama, K., 1995, Calcium inhibition of actin-myosin interaction, in Calcium as Cell Signal, K. Maruyama, Y. Nonomura and K. Kohama (eds.), Igaku-shoin, Tokyo, pp. 270–276.Google Scholar
  58. Nakamura, A. and Kohama, K., 1999, Calcium regulation of the actin-myosin interaction of Physarum policephalum, Int. Rev. Cytol. 19, 53–98.CrossRefGoogle Scholar
  59. Nakamura, A., Okagaki, T., Takagi, T., Tanaka, T. and Kohama, K., 1994, Molecular cloning and expression of Ca2+-binding protein that inhibits myosin light chain kinase activity in lower eukaryote Physarum polycephalum, Jpn. J. Pharmacol. 64, 112 (Abstract).Google Scholar
  60. Nakamura, A., Okagaki, T., Takagi, T., Nakashima, K.-I., Yazawa, M. and Kohama, K., 2000, Calcium binding properties of recombinant calcium binding protein 40, a major calcium binding protein of lower eukaryote Physarum Polycephalum, Biochemistry 39, 3827–3834.PubMedCrossRefGoogle Scholar
  61. Ogihara, S., Ikebe, M., Takahashi, K. and Tonomura, Y, 1983, Requirement of phosphorylation of Physarum myosin heavy chain for thick filament formation, actin activation of Mg2+-ATPase activity, and Ca2+-inhibitory superprecipitation, J. Biochem. 93, 205–223.PubMedGoogle Scholar
  62. Okagaki, T., Higashi-Fujime, S. and Kohama, K., 1989, Ca2+ activates actin-filament sliding on scallop myosin but inhibits that on Physarum myosin, J. Biochem. 106, 955–957.PubMedGoogle Scholar
  63. Okagaki, T., Ishikawa, R. and Kohama, K., 1991a, Inhibitory Ca2+-regulation of myosin light chain kinase in the lower eukaryote, Physarum polycephalum: Role of a Ca2+-dependent inhibitory factor, Eur. J. Cell Biol 56, 113–122.PubMedGoogle Scholar
  64. Okagaki, T., Ishikawa, R. and Kohama, K., 1991b, Purification of a novel Ca-binding protein that inhibits myosin light chain kinase activity in lower eukaryote Physarum polycephalum, Biochem. Biophys. Res. Commun. 176, 564–570.PubMedCrossRefGoogle Scholar
  65. Ozaki, K. and Maruyama, K., 1980, Connection, an elastic protein of muscle. A connectin-like protein from the Plasmodium Physarum polycephalum, J. Biochem. 88, 883–888.PubMedGoogle Scholar
  66. Ozaki, K., Sugino, H., Hasegawa, T., Takahashi, S. and Hatano, S., 1983, Isolation and characterization of Physarum profilin, J. Biochem. 93, 295–298.PubMedGoogle Scholar
  67. Pies, N.J. and Wohlfarth-Bottermann, K.E., 1986, Reactivation of a cell-free model from Physarum polycephalum: Studies on cryosections indicate an inhibitory effect of Ca++ on cytoplasmic actomyosin contraction, Eur. J. Cell Biol. 40, 139–149.PubMedGoogle Scholar
  68. Pollard, T.D. and Weihing, R.R., 1974, Actin and myosin and cell motility, CRC Crit. Rev. Biochem. 2, 1–65.PubMedCrossRefGoogle Scholar
  69. Ridgway, E.B. and Durham, A.C.H., 1976, Oscillations of calcium-ion concentrations in Physarum polycephalum, J. Cell Biol 69, 223–226.PubMedCrossRefGoogle Scholar
  70. Robbins, J., Dilorth, S.M., Laskey, R.A. and Dingwall, C, 1991, Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence, Cell 64, 615–623.PubMedCrossRefGoogle Scholar
  71. Shimmen, T. and Kohama, K., 1984, Ca2+-sensitive sliding of latex beads coated with Physarum or scallop myosin along actin bundles in Characeae cells. Abstracts of the papers presented at the Third International Congress on Cell Biology, Tokyo, p. 504 (Abstract).Google Scholar
  72. Shimmen, T. and Yano, M., 1984, Active sliding movement of latex beads coated with skeletal muscle myosin on Chara actin bundles, Protoplasma 121, 132–137.CrossRefGoogle Scholar
  73. Sobue, K. and Sellers, J.R., 1991, Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin system, J. Biol Chem. 266, 12115–12118.PubMedGoogle Scholar
  74. Sugino, H. and Hatano, S., 1982, Effect of fragmin on actin polymerization: Evidence for enhancement of nucleation and capping of the barbed end, Cell Motil. Cytoskel. 2, 457–470.CrossRefGoogle Scholar
  75. Sugino, H. and Matsumura, F., 1983, Fragmin induces tension reduction of actomyosin threads in the presence of micromolar levels of Ca2+, J. Cell Biol 96, 199–203.PubMedCrossRefGoogle Scholar
  76. Sutoh, K., Iwane, M., Matsuzaki, F., Kikuchi, M. and Ikai, A., 1984, Isolation and characterization of a high molecular weight actin-binding protein from Physarum polycephalum plasodia, J. Cell Biol. 98, 1611–1618.PubMedCrossRefGoogle Scholar
  77. Swanljung-Collins, H. and Collins, J.H., 1991, Ca2+ stimulates the Mg2+-ATPase activity of brush boder Myosin I with three or four calmodulin light chains but inhibits with less than two bound, J. Biol Chem. 266, 1312–1319.PubMedGoogle Scholar
  78. Takagi, S., 1993, Photoregulation of cytoplasmic streaming, Cell Struct. Funct. 18, 498. (abstract)Google Scholar
  79. Takagi, S. and Nagai, R., 1985, Light-controlled cytoplasmic streaming in Wallisneria mesophyll cells, Plant & Cell Physiol. 26, 941–951.Google Scholar
  80. Takagi, S. and Nagai, R., 1986, Intracellular Ca2+and cytoplasmic streaming in Valisneria mesophyll cells, Plant & Cell Physiol. 27, 953–959.Google Scholar
  81. Tazawa, M. and Kishimoto, U., 1968, Cessation of cytoplasmic streaming of Chara internodes during action potential, Plant & Cell Physiol 9, 361–368.Google Scholar
  82. Toda, H., Okagaki, T. and Kohama, K., 1990, Amino acid sequence of calmodulin from lower eukaryote; Physarum polycephalum, in The Biology and Medicine of Signal Trunsduction, Y. Nishizuka, M. Endo and T. Tanaka (eds.), Advances in Second Messenger and Phosphoprotein Research, Vol. 24, Raven Press, New York, p. 614 (Abstract).Google Scholar
  83. Tominaga, Y. Shimmen, T. and Tazawa, M., 1983, Control of cytoplasmic streaming by extracellular Ca2+ in permeabilized Nitella cells, Protoplasma 116, 75–77.CrossRefGoogle Scholar
  84. Uyeda, T.Q.P., Hatano, S., Kohama, K. and Furuya, M., 1988, Purification of myxamoebal fragmin, and switching of myxamoebal fragmin to plasmodia fragmin during differentiation of Physarum polycephalum, J. Muscle Res. Cell Motil. 9, 233–240.PubMedCrossRefGoogle Scholar
  85. Vale, R.P., Szent-Gyorgyi, A.G. and Sheetz, M.P., 1984, Movement of scallop on Nitella actin filaments: Regulation by calcium, Proc. Natl Acad. Sci. USA 81, 6775–6778.PubMedCrossRefGoogle Scholar
  86. Wang, K., 1977, Filamin, a new high-molecular weight protein found in smooth muscle and non muscle cells. Purifications and properties of chicken gizzard filamin, Biochemistry 16, 1857–1865.PubMedCrossRefGoogle Scholar
  87. Williamson, R.E., 1975, Cytoplasmic streaming in Chara: A cell model activated by ATP and inhibited by cytocharasin B, J. Cell Sci. 17, 655–688.PubMedGoogle Scholar
  88. Williamson, R.E. and Ashley, C.C., 1982, Free Ca2+ and cytoplasmic streaming in the alga Chara, Nature 296, 647–651.PubMedCrossRefGoogle Scholar
  89. Womack, EC. and Colowic, S.P., 1973. Rapid mesurement of binding of ligands by rate of dialysis, Methods in Enzymology 27, 464–471.PubMedCrossRefGoogle Scholar
  90. Xie, X., Harrison, I., Schlichting, D.H., Sweet, R.M., Kalabokis, V.N., Szent-Gyorgyi, A.G. and Cohen, C, 1994, Structure of the regulatory domain of scallop myosin at 2.8 Å resolution, Nature 368, 304–312.CrossRefGoogle Scholar
  91. Yin, H.L. and Stossel, T.P., 1980, Purification and structural properties of gelsolin, a Ca2+-activated regulatory protein of macrophages, J. Biol. Chem. 255, 9490–9493.PubMedGoogle Scholar
  92. Yokota, E. Muto, S. and Shimmen, T., 1999, Inhibitory regulation of higher-plant myosin by Ca2+ ions, Plant Physiol. 119, 231–239.PubMedCrossRefGoogle Scholar
  93. Yoshimoto, Y. and Kamiya, N., 1984, ATP and calcium-controlled contraction in a saponin model of Physarum polycephalum, Cell Struct. Funct. 9, 135–141.PubMedCrossRefGoogle Scholar
  94. Yoshimoto, Y., Matsumura, F. and Kamiya, N., 1981a, Simultaneous oscillations of Ca2+ efflux and tension generation in the premeabilized plasmodial strand of Physarum, Cell Motil. 1, 432–443.Google Scholar
  95. Yoshimoto, Y., Sakai, T. and Kamiya, N., 1981b, ATP oscillation in Physarum plasmodia, Protoplasma 109, 159–168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Hozumi Kawamichi
    • 1
  • Akio Nakamura
    • 1
  • Kazuhiro Kohama
    • 1
  1. 1.Department of PharmacologyGunma University School of MedicineMaebashi, GunmaJapan

Personalised recommendations