Skip to main content

The Proof Theory of Stig Kanger: A Personal Recollection

  • Chapter
  • 136 Accesses

Part of the book series: Synthese Library ((SYLI,volume 304))

Abstract

The term Proof Theory shows a certain ambiguity. In the fifties when Stig Kanger carried out his logical work it stood for a cluster of topics pertaining to the syntactic turnstile ⊢, that is, the syntactic counterpart to the semantical notion of (logical) consequence ⊨. On the other hand, and more narrowly, it also stood for investigations of the properties of the syntactic turnstile by means of systematic transformations of derivation trees. Stig Kanger was a proof theorist only in the former sense. For him, model-theoretic semantics, couched in a rich set-theoretic framework, held pride of place, and in this he was very close to the then main European school of logic, namely the Münster School, under the leadership of Heinrich Scholz. There are indeed many questions to be asked with respect to the mere 26 (!!) non-modal pages of Provability in Logic. 1 Not the least of these is the question: where did Stig Kanger find his semantics? He admired Alfred Tarski above all other logicians. By the side of Finnegan’s Wake, Tarski-Mostowski-Robinson, Undecidable Theories,2 and, of course, Der Wahrheitsbegriff in den formalisierten Sprachen,3 would have been with him on the Desert Island. The rare off-print copy of the German (1935) version of Tarski’s masterpiece from 1933, formerly in Stockholms Högskolas Humanistiska Bibliotek, now in the University library at Stockholm, bears the mark of careful study, but it does contain the model-theoretic semantics in question only derivatively at pp. 361–62: Tarski’s official definition of truth in §3, for the general calculus of classes, is not relativized to a domain of individuals, but quantifies over a universe of everything.

Revised text of an invited lecture read at the Kanger Memorial Symposium, Uppsala University, March, 1993.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Almqvist & Wiksell, Stockholm, 1957.

    Google Scholar 

  2. North-Holland, Amsterdam, 1953.

    Google Scholar 

  3. Studia Philosophica Vol. 1 (1936), pp. 261–405.

    Google Scholar 

  4. Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen (II:e Auflage), Band I, Heft 1, Teil 1, H. G. Teubner Verlag, Leipzig, 1952.

    Google Scholar 

  5. Is this the price that semantically inclined logicians have to pay? Owing to their semantic proclivities their touch is less sure when it comes to matters syntactic and then they prefer to play it rigorously by the book. Alnozo Church, Introduction to Mathematical Logic, Vol. 1, Princeton U. P., 1956, is the foremost example of this phenomenon.

    Google Scholar 

  6. Handbok i Logik. Del I: Logisk Konsekvens, Stocholms Högskola, 1959.

    Google Scholar 

  7. Bonniers, Stockholm, 1958, 1961, 1966.

    Google Scholar 

  8. Heinrich Scholz, Mathesis Universalis, Birkhäuser, Basel, 1961.

    Google Scholar 

  9. In Rolf Herken (ed.), The Universal Turing Machine, Oxford University Press, 1988, pp. 55–112.

    Google Scholar 

  10. See Sten Lindström’s contribution to the present volume.

    Google Scholar 

  11. ’semantic entailment and formal derivability’, Mededelingen der Kon. Nederlandse Akademie van Wetenschappen, Afd. letterkunde, n. s., 18, pp. 309-342, Amsterdam, 1955.

    Google Scholar 

  12. ‘Form and content in quantification theory’, in: Two Papers in Symbolic Logic, Acta Philosophica Fennica 8, Helsinki, 1955, pp. 7–55.

    Google Scholar 

  13. ‘Ein System des verknüpfenden Schliessens’, Archiv für mathematische Logik und Grundlagensorschung, 2 (1956), pp. 55–67.

    Google Scholar 

  14. ’syntactical and semantical properties of simple type theory’, Journal of Symbolic Logic, 25 (1960), pp. 305–326.

    Google Scholar 

  15. Springer, Berlin, 1968.

    Google Scholar 

  16. Penguin, Harmondsworth, 1977.

    Google Scholar 

  17. An unusually perceptive move of Kanger’s — which is still not part of the common logical fare — is the use of “quasi-deductions” and “assumption sequent” (p. 19). Usually, the antecedent formulae, that is, the antecedents of consequence relations, are the only assumptions considered, but Kanger clearly perceived that one can also make use of assumption at one level above, so to speak, and assume that a consequence, that is, a sequent, holds, or holds logically.

    Google Scholar 

  18. John Wiley & Sons, N.Y., 1967, at p. 285.

    Google Scholar 

  19. ‘Comments on Gentzen-type procedures and the classical notion of truth’, in: Justus Diller and Gert Müller (eds.), Proof Theory Symposion Kiel 1974, Lecture Notes in Mathematics, 500, Springer, Berlin, 1975, pp. 290–319.

    Google Scholar 

  20. Kurt Gödel, ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’, Monatshefte für Mathematik und Physik, 37 (1930), pp. 349–360.

    Article  Google Scholar 

  21. Leon Henkin, ‘The completeness of the first-order functional calculus’, Journal of Symbolic Logic, 14 (1949), pp. 159–166.

    Article  Google Scholar 

  22. ‘Untersuchungen über das logische Schliessen’, Mathematische Zeitschrift, 39 (1934), pp. 176–210, 405–431.

    Google Scholar 

  23. Oiva Ketonen, Untersuchungen zum Prädikatenkalkül, Annales Academiae Scientarium Fennicae, Ser. A, I, Mathematica-Physica 23, Helsinki, 1944.

    Google Scholar 

  24. Grundlagen der Mathematik, I (1934), II (1939), Springer, Berlin, in Band II, § 3.4.

    Google Scholar 

  25. Acta Academiae Aboensis, Math. et Phys., 17:3, Åbo, 1952.

    Google Scholar 

  26. E. W. Beth, ‘Semantic construction of intuitionistic logic’, Mededelingen der Kon. Nederlandse Akademie van Wetenschappen, Afd. letterkunde, n. s., 18, pp. 357–388, Amsterdam, 1956.

    Google Scholar 

  27. Verena Dyson and Georg Kreisel, ‘Analysis of Beth’s Semantic construction of intuitionistic logic’, Technical Report No. 3, Applied Mathematics and Statistical Laboratories, Stanford University, 1961.

    Google Scholar 

  28. ‘An intuitionistic completeness theorem for intuitionistic predicate logic’, Journal of Symbolic Logic, 41 (1976), pp. 159-166.

    Google Scholar 

  29. ‘Another intuitionistic completeness proof’, Journal of Symbolic Logic, 41 (1976), pp. 644-662. (De Swart used a Smullyan notational variant of the Gentzen sequent calculus that was popularized by Melvin Fitting: the sequent A1,…,An ⇒ B1,…,Bn is written TA1,…,TAn, FB1,…,FBn, using so called signed formulae, thereby making explicit the operational instruction embodied in the sequent.)

    Google Scholar 

  30. Michael Dummett, Elements of Intuitionism, Oxford U.P., 1977, p. 288. Friedman’s work is unpublished.

    Google Scholar 

  31. ‘An interpolation theorem for denumerably long formulas’, Fundamenta Mathematicae, 58 (1965), pp. 190–205.

    Google Scholar 

  32. Infinitary Logic and Admissible Sets, Ph.D. Thesis, Stanford, 1967.

    Google Scholar 

  33. ‘Preservation theorems for logic with denumerable conjunctions and disjunctions’, Journal of Symbolic Logic, 34 (1969), pp. 437–459.

    Google Scholar 

  34. North-Holland, Amsterdam, 1971.

    Google Scholar 

  35. Springer, Berlin, 1975.

    Google Scholar 

  36. C.F. Kent, ‘Further restricted ω-rule’, Part I, Preprint, Case Western Reserve University, c:a 1967.

    Google Scholar 

  37. ‘Remarks on an infinitary language with constructive formulas’, Journal of Symbolic Logic, 32 (1967), pp. 305–318.

    Google Scholar 

  38. J. Shoenfield, ‘On a restricted ω-rule’, Bulletin de l’Academie Polonaise des Sciences, Ser. Sc. Math., Phys. et Astr., 7 (1959), pp. 405–407.

    Google Scholar 

  39. Gaisi Takeuti, ‘On a generalized logical calculus’, Japanese Journal of Mathematics, 23 (1953), pp. 39–96.

    Google Scholar 

  40. W.W. Tait, ‘A non-constructive proof of Gentzen’s Hauptsatz for second-order logic’, Bulletin of the American Mathematical Society, 72 (1966), pp. 980–983.

    Article  Google Scholar 

  41. Dag Prawitz, ‘Completeness and Hauptsatz for second order logic’, Theoria, 33 (1967), pp. 246–258, and ‘Hauptsatz for higher order logic’, Journal of Symbolic Logic, 33 (1968), pp. 452–457.

    Article  Google Scholar 

  42. M. Takahasi, ‘A proof of cut-elimination theorem in simple type theory’, Journal of the Mathematical Society of Japan, 19 (1967), pp. 399–410.

    Article  Google Scholar 

  43. Three-valued Logic and Cut-elimination: the Actual Meaning of Takeuti’s Conjecture, Dissertationes Mathematicae, 136, Warsaw, 1976.

    Google Scholar 

  44. ‘The use of abstract language in elementary mathematics: some pedagogic examples’, in: R. Parikh (ed.), Boston Logic Colloquium, Lecture Notes in Mathematics, 453, Springer, Berlin, 1976, pp. 38–131.

    Google Scholar 

  45. Herman Ruge Jervell, ‘Reasoning in trees’, in: D.G. Skordev, Mathematical Logic and its Applications, Plenum Press, N.Y., 1987, pp. 125–135.

    Chapter  Google Scholar 

  46. Springer, Berlin, 1980.

    Google Scholar 

  47. See Church’s Introduction to Mathematical Logic, op. cit., fn. 6, exercises 12.7, 12.8, and 18.3 for the proof.

    Google Scholar 

  48. All but one of which are easily available in his Existence, Truth and Provability, State University of New York Press, Albany, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sundholm, G. (2001). The Proof Theory of Stig Kanger: A Personal Recollection. In: Holmström-Hintikka, G., Lindström, S., Sliwinski, R. (eds) Collected Papers of Stig Kanger with Essays on His Life and Work. Synthese Library, vol 304. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0630-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0630-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0112-3

  • Online ISBN: 978-94-010-0630-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics