Advertisement

Quantum Cosmology for the General Bianchi Type II, VI(Class A) and VII(Class A) Vacuum Geometries

  • T. Christodoulakis
  • G. O. Papadopoulos
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 276)

Abstract

The canonical quantization of the most general minisuperspace actions -i.e. with all six scale factor as well as the lapse function and the shift vector present- describing the vacuum type II, VI and VII geometries, is considered. The reduction to the corresponding physical degrees of freedom is achieved through the usage of the linear constraints as well as the quantum version of the entire set of classical integrals of motion.

Keywords

Poisson Bracket Bianchi Type Outer Automorphism Class Constraint Quantum Cosmology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. H. Goroff and H. Sagnoti, Nucl. Phys. B 266 709 (1986); G. t’ Hooft, Proc. 1978 Cargese Summer School, edited by M. Levy, S. Deser, G. t’ Hooft and M. Veltman, Ann. Inst. Henri Poincare 20 69 (1974).ADSCrossRefGoogle Scholar
  2. [2]
    T. Christodoulakis and J. Zaneli, Nuovo Cimento B 93 22 (1986); T. Christodoulakis and J. Zaneli, Class. Quantum Grav. 4 851 (1987); T. Christodoulakis and E. Korfiatis, Nuovo Cimento B 106 239 (1991); A. Ashtekar, Phys. Rev. Lett. 57 2224 (1986); A. Ashtekar, Phys. Rev. D31 1777 (1985); T. Jacobson and L. Smolin, Nucl. Phys. B 299 295 (1988); C. Rovelli and L. Smolin, Nucl. Phys. B 331 80 (1990).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    For a comprehensive list of references, see: J. Halliwell, “A bibliography of papers on Quantum Cosmology” NSF-ITP-89-162.Google Scholar
  4. [4]
    See for example: P. Amsterdamski, Phys. Rev. D 31 3073 (1985); S. W. Hawking and J. C. Lutreli, Phys. Lett. B 143 83 (1984); S. DelCampo and A. Vilenkin, Phys. Lett. B 224 45 (1989).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    The pioneer work on the issue of Constrained Dynamics, can be found in: P.A.M. Dirac, “Lectures on Quantum Mechanics”, Belfer Graduate School of Science, Yeshiva University, New York (1964); P. A. M. Dirac, Proc. Roy. Soc. A246, 326 (1958a); P. A.M. Dirac, Canad. J.Math. 2, 129 (1950).Google Scholar
  6. [6]
    For an extensive treatment (e.g. Hamiltonian/Lagrangian Formalism, Path-Integrals) with a great variety of applications (Gravitation, Yang-Mills Theories, Strings, e.t.c.), the interested reader is referred to: K. Sundermeyer, “Constrained Dynamics”, Spinger-Verlag (1982) and the references therein.Google Scholar
  7. [7]
    A modem approach, along with a wide range of applications as well as the corresponding bibliography, can be found in: A. W. Wipf, “Hamilton’s Formalism for Systems with Constraints” Lectures given at the Seminar “The Canonical Formalism in Classical and Quantum General Relativity”, Bad Honnef, September 1993 ETH-TH/93-48 (hep-th/9312078).Google Scholar
  8. [8]
    R. Kantowski and R. K. Sachs, J. Math. Phys. 7(3) (1966).Google Scholar
  9. [9]
    T. Christodoulakis, G. Kofinas, E. Korfiatis and A. Paschos, Phys. Lett. B 390 (1997) 55–58.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. P. Ryan & L. C. Shepley, “Homogeneous Relativistic Cosmologies”, Princeton University Press, Princeton, New Jersey 1975.Google Scholar
  11. [11]
    G. E. Sneddon, Journal of Physics A 9 (1976) 2 M. A. H. MacCallum and A. H. T. Taub, Commun. Math. Phys. 25 (1972) 173 T. Christodoulakis and E. Korfiatis, Nuovo Cimento 109 B (1994) 11.MathSciNetCrossRefGoogle Scholar
  12. [12]
    P.R. Carabedian “Partial Differential Equations”, Chelsea, New York, 1986.Google Scholar
  13. [13]
    K. V. Kuchař and P. Hajiceck, Physical Review D 41 (1990) 1091; K. V. Kuchař and P. Hajiceck, J. Math. Phys. 31 (1990) 1723.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    T. Christodoulakis and E. Korfiatis, “Kuchař’s Physical Variables and Automorphism Inducing Diffeomorphisms in Class A Spatially Homogeneous Geometries”, University of Athens, Preprint 6, 1994.Google Scholar
  15. [15]
    T. Christodoulakis, G. Kofinas, E. Korfiatis and A. Paschos, Phys. Lett. B 419 (1998) 30–36.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    K. V. Kuchař, J. Math. Phys. 23(9) (1982) 1647–1661.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    T. Christodoulakis, G. Kofinas, E. Korfiatis, G.O. Papadopoulos and A. Paschos, to appear in J. Math. Phys. gr-qc/OOO8050.Google Scholar
  18. [18]
    Handbook of Mathematical Functions, Edited by M. Abramowitz and I. Stegun, Dover Publications, N.Y.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • T. Christodoulakis
    • 1
  • G. O. Papadopoulos
    • 1
  1. 1.Physics Department, Nuclear & Particle Physics SectionUniversity of AthensAthensGreece

Personalised recommendations