Geometrical Aspects of Cosmic Magnetic Fields

  • Christos G. Tsagas
Part of the Astrophysics and Space Science Library book series (ASSL, volume 276)


We discuss how the vector nature of magnetic fields and the geometrical interpretation of gravity introduced by general relativity lead to a special coupling between magnetism and spacetime curvature. This magneto-geometrical interaction effectively transfers the tension properties of the field into the spacetime fabric, triggering a variety of effects with potentially far-reaching implications.


Magnetic Fields Early Universe Large-Scale Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.J. Peebles, Astrophys. J. 147, 859 (1967); T. V. Ruzmaikina andA.A. Ruzmaikin, Soviet Astron. 14, 963 (1971); M.J. Reesand M. Reinhardt, Astron. Astrophys. 19, 189(1972); 1. Wasserman, Astrophys. J. 224,337 (1978); D. Papadopoulos andEP. Esposito. Astrophys. 1. 257, 10 (1982).ADSCrossRefGoogle Scholar
  2. [2]
    E. Kim, A. Olinto and R. Rosner, Astrophys. J. 468, 28 (1996); E. Battaner, E. Florido and J. Himenez, Astron. Astrophys. 326, 13 (1997)ADSCrossRefGoogle Scholar
  3. [3]
    C.G. Tsagas and J.D. Barrow, Class. Quantum Grav. 14, 2539 (1997); C.G. Tsagas and J.D. Barrow, Class. Quantum Grav. ibid., 15, 3523(1998). C.G. Tsagas and R. Maartens, Phys. Rev. D 61, 083519 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    C.G. Tsagas and R. Maartens, Class.Quantum Grav. 17, 2215 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    D.R. Matravers and C.G. Tsagas, Phys.Rev. D62, 103519 (2000); C.G.Tsagas,Phys.Rev. Lett. 86, 5421 (2001).ADSCrossRefGoogle Scholar
  6. [6]
    E.N. Parker, Cosmical Magnetic Fields (Oxford: Oxford University Press, 1979); L. Mestel, Stellar Magnetism (Oxford: OxfordUniversity Press, 1999).Google Scholar
  7. [7]
    C. Caprini and R. Durrer, Phys.Rev. D to appear (astro-ph/0I06244).Google Scholar
  8. [8]
    P.K.S. Dunsby, B.A.C.C. Bassett and G.F.R. Ellis, Class. Quantum Grav. 14, 1215 (1997); A. Challinor, Class. Quantum Grav. 17, 871 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    R. Maartens, C.G. Tsagas and C. Ungarelli, Phys. Rev. D 63, 123507 (2001).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Christos G. Tsagas
    • 1
  1. 1.Relativity and Cosmology GroupUniversity of PortsmouthPortsmouthEngland

Personalised recommendations