Advertisement

Scale Dependence of Dark Energy Antigravity

  • L. Perivolaropoulos
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 276)

Abstract

We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton’s law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scaler R c beyond which antigravity dominates the dynamics (r c ∼ 1Mpc) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few Mpc) to determine the density and equation of state of dark energy.

Keywords

Cosmological Constant Newton’s law Dark Energy Galactic Dynamics Hubble Flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Axenides, E.G. Floratos and L. Perivolaropoulos, Mod. Phys. Lett. A 15, 1541 (2000) [astro-phl0004080].ADSCrossRefGoogle Scholar
  2. [2]
    S. Perlmutter et al. [Supernova Cosmology Project Collaboration], ApJ, 517, 565 (1999); astro-phl9812133.ADSCrossRefGoogle Scholar
  3. [3]
    B. P. Schmidt et al. [Hi-Z Supernova Team Collaboration]. ApJ, 507, 46 (1998); astrophl9805200ADSCrossRefGoogle Scholar
  4. [4]
    A. G. Riess et al., AJ, 116, 1009(1998)[astro-phl980520l].ADSCrossRefGoogle Scholar
  5. [5]
    de Bernardis et al. Nature.404, 955 (2000).ADSCrossRefGoogle Scholar
  6. [6]
    Jaffe A.H. et al., Phys.Rev.Lett. 86, 3475 (2001) [astro-phlOOO7333]ADSCrossRefGoogle Scholar
  7. [7]
    S. Weinberg, “Theories of the cosmological constant:” astro-phl9610044.Google Scholar
  8. [8]
    L. M. Krauss and M. S. Turner, Gen. ReI. Grav. 27. 1137(1995) [astro-phl9504003].ADSzbMATHCrossRefGoogle Scholar
  9. [9]
    S. M. Carroll, W.H. Press and E. L. Turner, ARAA, 30, 499 (1992).ADSCrossRefGoogle Scholar
  10. [10]
    J. P. Ostrikerand P. J. Steinhardt, Nature377.600 (1995).ADSCrossRefGoogle Scholar
  11. [11]
    R. Quast and P. Helbig, A&A, 344, 721 (1999)[astro-phl9904174].ADSGoogle Scholar
  12. [12]
    I. Zehavi and A. Dekel, Nature, 401, 252 (1999) [astro-ph/9904221]. [13]_S. B. Whitehouse and G. V. Kraniotis, astro-ph/9911485.ADSCrossRefGoogle Scholar
  13. [14]
    J. Cardona and J. Tejeiro, Ap. J. 493, 52 (1998).ADSCrossRefGoogle Scholar
  14. [15]
    E. L. Wright, astro-ph/9805292.Google Scholar
  15. [16]
    I. P. Neupane, gr-qc/9902039.Google Scholar
  16. [17]
    M. D. Roberts, MNRAS, 228, 401 (1987).ADSzbMATHGoogle Scholar
  17. [18]
    R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998) [astroph/ 9708069]; I. Zlatev, L. Wang and P. J. Steinhardt, Phys, Rev. Lett. 82, 896 (1999) [astroph/ 9807002].ADSCrossRefGoogle Scholar
  18. [19]
    J. Garriga and A. Vilenkin, I. Garriga, M. Livio and A. Vilenkin, Phys. Rev. D61, 023503 (2000)[astro-ph/9906210].ADSGoogle Scholar
  19. [20]
    R.H. Sanders, ApJ, 473, 117 (1996).ADSCrossRefGoogle Scholar
  20. [21]
    P.J.E. Peebles, Principles of Physical Cosmology, Princeton Series in Physics (1993).Google Scholar
  21. [22]
    PJ.E. Peebles, A.L. Melott, M.R. Holmes and L.R. Jiang, ApJ, 345, 108 (1989).ADSCrossRefGoogle Scholar
  22. [23]
    Y. Baryshev, A. Chemin and P. Teerikorpi, A&A, 378, 729 (2001) [astro-ph/0011528]ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • L. Perivolaropoulos
    • 1
  1. 1.National Centre for Scientific Research “Demokritos N.C.S.R.”Institute of Nuclear PhysicsAthensGreece

Personalised recommendations