Skip to main content

Pattern formation in embryos of the oligochaete annelid Tubifex: cellular basis for segmentation and specification of segmental identity

  • Conference paper
Aquatic Oligochaete Biology VIII

Part of the book series: Developments in Hydrobiology ((DIHY,volume 158))

  • 129 Accesses

Abstract

The embryonic origin of metameric segmentation was examined in the oligochaete Tubifex using lineage tracers. Segments in Tubifex embryos arise from five bilateral pairs of longitudinal coherent columns (bandlets) of primary blast cells which are generated by five bilateral pairs of embryonic stem cells called teloblasts (M, N, O, P and Q). As development proceeds, an initially linear array of blast cells in each ectodermal bandlet gradually changes its shape in a lineage-specific manner. These morphogenetic changes result in the formation of distinct cell clumps, which are separated from the bandlet to serve as segmental elements (SEs). SEs in the N and Q lineages are each comprised of clones of two consecutive primary blast cells. In contrast, in the O and P lineages, individual blast cell clones are distributed across SE boundaries; each SE is a mixture of a part of the preceding anterior clone and a part of the next posterior clone. Morphogenetic events, including segmentation, in an ectodermal bandlet proceed normally in the absence of neighboring ectodermal bandlets. Without the underlying mesoderm, separated SEs fail to space themselves at regular intervals along the anteroposterior axis. It is suggested that ectodermal segmentation in Tubifex consists of two stages; autonomous morphogenesis of each bandlet leading to generation of SEs, and the ensuing mesoderm-dependent alignment of separated SEs. In contrast, metameric segmentation in the mesoderm (M lineage) is a one-step process in that it arises from an initially simple organization (i.e. a linear series) of primary m-blast cells, which individually serve as a founder cell of each segment. The boundary between mesodermal segments is determined autonomously. The results of a set of cell ablation and transplantation experiments, using alkaline phosphatase activity as a biochemical marker for segments VII and VIII suggest that segmental identities in primary m-blast cells are determined according to the genealogical position in the M lineage and that the M teloblast possesses a developmental program through which the sequence of blast cell identities is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai, A., A. Nakamoto & T. Shimizu, 2001. Specification of cell fates of ectoteloblast lineages in embryos of the oligochaete annelid Tubifex: involvement of novel cell-cell interactions. Development 128: 1211–1219.

    PubMed  CAS  Google Scholar 

  • Blair, S. S., 1982. Interactions between mesoderm and ectoderm in segment formation in the embryo of a glossiphoniid leech. Dev. Biol. 89: 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Brusca, R. C & G. J. Brusca, 1990. Invertebrates. Sinauer, Sunderland.

    Google Scholar 

  • Devries, J., 1973a. La formation et la destinée des feuillets embryonnaires chez le lombricien Eisenia foetida (Annélide Oli-gochète). Arch. Anat. Microsc. 62: 15–38.

    CAS  Google Scholar 

  • Devries, J., 1973b. Détermination précoce du développement embryonnaire chez le lombricien Eisenia foetida. Bull. Soc. Zool. Fr. 98: 405–417.

    Google Scholar 

  • Fernandez, F. & N. Olea, 1982. Embryonic development of glos-siphoniid leeches. In Harrison, F. W. & R. R. Cowden (eds), Developmental Biology of Freshwater Invertebrates. Alan R. Liss, New York: 317–361.

    Google Scholar 

  • Gleizer, L. & G. S. Stent, 1993. Developmental origin of segmental identity in the leech mesoderm. Development 117: 177–189.

    PubMed  CAS  Google Scholar 

  • Goto, A., K. Kitamura & T. Shimizu, 1999a. Cell lineage analysis of pattern formation in the Tubifex embryo. I. Segmentation in the mesoderm. Int. J. Dev. Biol. 43: 317–327.

    CAS  Google Scholar 

  • Goto, A., K. Kitamura, A. Arai & T. Shimizu, 1999b. Cell fate analysis of teloblasts in the Tubifex embryo by intracellular injection of HRP. Dev. Growth Differ. 41: 703–713.

    Article  CAS  Google Scholar 

  • Huang, F. Z. & D. A. Weisblat, 1996. Cell fate determination in an annelid equivalence group. Development 122: 1839–1847.

    PubMed  CAS  Google Scholar 

  • Kitamura, K. & T. Shimizu, 2000a. Embryonic expression of alkaline phosphatase activity in the oligochaete annelid Tubifex. Invert. Reprod. Dev. 37: 69–73.

    Article  CAS  Google Scholar 

  • Kitamura, K. & T. Shimizu, 2000b. Analyses of segment-specific expression of alkaline phosphatase activity in the mesoderm of the oligochaete annelid Tubifex: implications for specification of segmental identity. Dev. Biol. 219: 214–228.

    Article  CAS  Google Scholar 

  • Meyer, A., 1929. Die Entwicklung der Nephridien und Gonoblasten bei Tubifex rivulorum Lam. nebst Bemerkungen zum natürlichen System der Oligochäten. Z. wiss. Zool. 133: 517–562.

    Google Scholar 

  • Nakamoto, A., A. Arai & T. Shimizu, 2000. Cell lineage analysis of pattern formation in the Tubifex embryo. II. Segmentation in the ectoderm. Int. J. Dev. Biol. 44: 797–805.

    PubMed  CAS  Google Scholar 

  • Penners, A., 1922. Die Furchung von Tubifex rivulorum Lam. Zool. Jb. Abt. Anat. Ontog. Tiere 43: 323–367.

    Google Scholar 

  • Penners, A., 1924a. Die Entwicklung des Keimstreifs und die Organbildung bei Tubifex rivulorum Lam. Zool. Jb. Abt. Anat. Ontog. Tiere 45: 251–308.

    Google Scholar 

  • Penners, A., 1924b. Ãœber die Entwicklung teilweise abgetöteter Eier von Tubifex rivulorum. Verh. dt. zool. Ges. 29: 69–73.

    Google Scholar 

  • Penners, A., 1926. Experimentelle Untersuchungen zum Determinationsproblem am Keim von Tubifex rivulorum Lam. II. Die Entwicklung teilweise abgetöteter Keime. Z. wiss. Zool. 127: 1–140.

    Google Scholar 

  • Penners, A., 1934. Experimentelle Untersuchungen zum Determinationsproblem am Keim von Tubifex rivulorum Lam. III. Abtötung der Teloblasten auf verschiedenen Entwicklungsstadien des Keimstreifs. Z. wiss. Zool. 145: 220–260.

    Google Scholar 

  • Shimizu, T., 1982. Development in the freshwater oligochaete Tubifex. In Harrison, F. W. & R. R. Cowden (eds), Developmental Biology of Freshwater Invertebrates. Alan R. Liss, New York: 283–316.

    Google Scholar 

  • Torrence, S. A. & D. K. Stuart, 1986. Gangliogenesis in leech embryos: Migration of neural precursor cells. J. Neurosci. 6: 2736–2746.

    PubMed  CAS  Google Scholar 

  • Weisblat, D. A. & M. Shankland, 1985. Cell lineage and segmentation in the leech. Phil. Trans, r. Soc, Lond. B312: 39–56.

    Google Scholar 

  • Weisblat, D. A., S. Y. Kim & G. S. Stent, 1984. Embryonic origin of cells in the leech Helobdella triserialis. Dev. Biol. 104: 65–85.

    Article  PubMed  CAS  Google Scholar 

  • Weisblat, D. A., G. Harper, G. S. Stent & R. T. Sawyer, 1980. Embryonic cell lineages in the nervous system of the glossiphoniid leech Helobdella triserialis. Dev. Biol. 76: 58–78.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, E. B., 1889. The embryology of the earthworm. J. Morph. 3: 387–462.

    Article  Google Scholar 

  • Zackson, S. L., 1982. Cell clones and segmentation in leech development. Cell 31: 761–770.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shimizu, T., Kitamura, K., Arai, A., Nakamoto, A. (2001). Pattern formation in embryos of the oligochaete annelid Tubifex: cellular basis for segmentation and specification of segmental identity. In: Rodriguez, P., Verdonschot, P.F.M. (eds) Aquatic Oligochaete Biology VIII. Developments in Hydrobiology, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0597-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0597-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3887-4

  • Online ISBN: 978-94-010-0597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics