Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 77))

  • 302 Accesses

Abstract

We give an introduction into the basic features and applications of a quantum mechanical “particle” with the Hermitian matrix valued coordinate. The system enjoys certain integrability properties which allows exact analytical calculations of some interesting physical quantities and counting of planar graphs embedded into the one dimensional line or the circle.

Lectures at the European Summer School “Asymptotic combinatorics with applications to mathematical physics”, St.Petersburg (Russia), July 2001

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoppe, J., Kazakov V. and Kostov, I. (2000) Dimensionally Reduced SYM4 as Solvable Matrix Quantum Mechanics, Nucl.Phys. B, 571, 479; hep-th/9907058.

    Article  MathSciNet  ADS  Google Scholar 

  2. Klebanov, I. (1991) String Theory in Two Dimensions, Lectures delivered at the ICTP Spring School on String Theory and Quantum Gravity, Trieste, April 1991; hep-th/9108019. (Review sur la corde a une dimension - surfaces aleatoires en 1 dimension, les approches matriciel et conforme)

    Google Scholar 

  3. Boulatov, D. and Kazakov, (1993) One dimensional string theory with vortices as an upside down matrix oscillator, J. Mod. Phys. A, 8, 809; hep-th/0012228.

    MathSciNet  ADS  Google Scholar 

  4. Kazakov, V. and Migdal, A. (1988) Recent Progress in the Theory of Non-critical Strings, Nucl. Phys. B, 311, 171. (Review sur la gravite quantique a 2 dimensions et scaling physique pour les surfaces aleatoires en 1 dimension).

    Article  MathSciNet  ADS  Google Scholar 

  5. Gross, D. and Klebanov, I. (1990) Vortices and the non-singlet sector of the c=l matrix model, Nucl. Phys. B, 354, 459.

    MathSciNet  ADS  Google Scholar 

  6. Brezin, E., Itzykson, C., Parisi, C. and Zuber, J.-B. (1978) Planar approximation, Comm. Math. Phys., 59, 35. (Le papier classique sur le modele d’une matrice et la mechanique quantique matricielle.)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Kazakov, V. A. (1991) Bosonic strings and string field theories in one-dimensional target space, in O. Alvarez, E. Marinari, P. Windey (Eds.) Random surfaces and quantum gravity, Carg se 1990. (Review sur les surfaces aleatoires et D = 1-mechanique quantique matriciele).

    Google Scholar 

  8. Kazakov, V., Kostov, I. and Kutasov, D. (2001) A Matrix Model for the Two Dimensional Black Hole; hep-th/0101011.

    Google Scholar 

  9. Alexandrov, S. and Kazakov V. (2001) Correlators in 2D string theory with vortex condensation, Nucl. Phys. B, 610, 77; hep-th/0104094.

    Article  MathSciNet  ADS  Google Scholar 

  10. Boulatov, D. V., Kazakov, V. A., Kostov, I.K. and Migdal, A.A. (1986) Analytical and numerical study of a model of dynamically triangulated random surfaces, Nucl. Phys. B, 275, [FS17], 641. (Tout sur les surfaces aleatoires en D dimensions (y compris les resultats numeriques) et les resultats analytiques sur D = -2,0,1.)

    MathSciNet  Google Scholar 

  11. Boulatov, D. V. and Kazakov, V. A. (1987) The Ising model on a random planar lattice: the structure of phase transition and the exact critical exponents, Phys. Lett. B, 186 379. (La solution et Panalyse du modele d’Ising sur les reseaux aleatoires=le modele de 2 matrices).

    MathSciNet  ADS  Google Scholar 

  12. Ginsparg, P. and Moore, G. (1993) Proceedins of TASI 1992, hep-th/9304011. (Review sur la gravite quantique a 2 dimensions: les approches matriciel et conforme).

    Google Scholar 

  13. Di Francesco, P., Ginsparg, P. and Zinn-Justin, J. (1995) 2D gravity and random matrices, Phys. Rept., 254 1–133. (Review sur la gravite quantique a 2 dimensions: les approches matriciel et conforme).

    Article  ADS  Google Scholar 

  14. Mehta, M. L. (1991) Random Matrices, Acad. Press, NY. (le livre classique sur les matrices aleatoires).

    MATH  Google Scholar 

  15. Polychronakos, A. P. (1999) Generalized statistics in one dimension, hep-th/9902157, Les Houches 1998 Lectures; 54 pages.

    Google Scholar 

  16. Marchesini, G. and Onofri, E. (1980) Planar limit for SU(N) symmetric quantum dynamical systems, J. Math. Phys., 21, 1103.

    Article  MathSciNet  ADS  Google Scholar 

  17. Feynrnan, R. P. (1972) Statistical Mechanics, W. A. Benjamin, Inc., Advanced book program reading, Massachusetts.

    Google Scholar 

  18. Ueno, K. and Takasaki, K. (1984) Adv. Stud. Pure Math., 4, 1

    MathSciNet  Google Scholar 

  19. Takasaki, K. (1984) Adv. Stud. Pure Math. 4 (1984) 139.

    MathSciNet  Google Scholar 

  20. Hirota, R. (1980) Direct Method in Soliton Theory, in R. K. Bullogh and R. J. Caudrey (Eds.) Solitons, Springer, 1980

    Google Scholar 

  21. Jimbo, M. and Miwa, (1983) T. Publ. RIMS, Kyoto Univ. 19, No. 3, 943.

    Google Scholar 

  22. Moore, G. (1992) hep-th/9203061.

    Google Scholar 

  23. Knizhnik, V., Polyakov, A. and Zamolodchikov, A. (1988) Mod. Phys. Lett. A, 3, 819

    MathSciNet  ADS  Google Scholar 

  24. David F. (1988) Mod. Phys. Lett. A, 3, 1651

    ADS  Google Scholar 

  25. Distler, J. and Kawai, H. (1989) Nucl. Phys. B, 321,509.

    Article  MathSciNet  ADS  Google Scholar 

  26. Das, S. and Jevicki, A. (1990) Mod. Phys. Lett. A, 5, 1639.

    MathSciNet  ADS  Google Scholar 

  27. Brezin, E., Kazakov, V. and Zamolodchikov, A. (1990) Nucl. Phys. B, 338, 673

    Article  MathSciNet  ADS  Google Scholar 

  28. Parisi, G. (1990) Phys. Lett. B, 238, 209

    MathSciNet  ADS  Google Scholar 

  29. Gross, D. and Miljkovic, N. (1990) Phys. Lett. B, 238, 217

    MathSciNet  ADS  Google Scholar 

  30. Ginsparg, P. and Zinn-Justin, J. (1990) Phys. Lett. B, 240, 333.

    Article  MathSciNet  ADS  Google Scholar 

  31. Polchinski, J. (1994) What is String Theory?, Lectures presented at the 1994 Les Houches Summer School “Fluctuating Geometries in Statistical Mechanics and Field Theory”, hep-th/9411028.

    Google Scholar 

  32. Ginsparg, P. and Moore, G. (1993) Proceedings of TASI 1992, hep-th/9304011.

    Google Scholar 

  33. Kostov, I. K. hep-th/0107247.

    Google Scholar 

  34. Landau, L. and Lifchits, E. (1951) Quantum Mechanics, vol. 3, ch. 7, the problem of E. C. Kemble in sect. 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kazakov, V. (2002). Matrix Quantum Mechanics. In: Malyshev, V., Vershik, A. (eds) Asymptotic Combinatorics with Application to Mathematical Physics. NATO Science Series, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0575-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0575-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0793-4

  • Online ISBN: 978-94-010-0575-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics