Methods for Biological Quality Assessment of the River Rhine

  • M. Marten


The River Rhine is one of the most anthropogenetically stressed ecosystems in Europe. Between 1817 and 1879 the watercourse was already heavily under construction to improve water discharge according to the plans of J. G. Tulla. In the following decades diverse additional engineering measures were performed, with the consequence of an increase of current velocity and intense bottom erosion along the free flowing stretches, and minimization of current in the backwaters of the several newly built dams. Targets were improvement of flood control, generation of hydroelectric power, and shipping traffic, on the price of almost complete lost of the ecological function of the floodplain area. Pollution with diverse inorganic and organic chemical compounds from urban and industrial discharge increased severely in the 50’s and 6o’s of the past century. The ecological quality reached its lowest level in the 6o’s and 70’s. Fish deaths were the order of way. On the experience of the deteriorated river channel (pollution, flooding, local groundwater lowering, ecological impoverishment) intense investments in purification plants on the Rhine and its catchment area were done and proved positive. Restoration aspects for the river and the floodplain were focussed since 1988. Quality and diversity of species of fish and macrozoobenthos has improved visibly. However, in November 1986 a heavy pollution wave, caused by the Sandoz accident, contaminated the Rhine water and riverbed with various insecticides. Particularly the macrozoobenthos was heavily influenced (Braukmann et al. 1987).


Biological Monitoring Floodplain Area River Rhine Rhine Water Impedance Measuring Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braukmann, U., Jöchle, G., Pinter, I., Schmitz, W., Vobis, H. (1987): Der ökologische Zustand des Rheins und seiner Nebengewässer nach dem Sandoz-Unfall. — Landesanstalt für Umweltschutz Baden-Württemberg (Editor).Google Scholar
  2. Lawa (1996): Empfehlungen zum Einsatz von kontinuierlichen Biotestverfahren für die Gewässerüberwachung. — Länderarbeitsgemeinschaft Wasser (Lawa, Hrsg.), Arbeitskreis ‘Biomonitoring’, Kulturbuch, Berlin: 1–38.Google Scholar
  3. Lawa (2000): Einsatzmöglichkeiten des Biomonitorings zur Überwachung von Langzeit-Wirkungen in Gewässern. — Länderarbeitsgemeinschaft Wasser (Lawa, Hrsg.); Arbeitskreis ‘Biomonitoring’, Kulturbuch, Berlin: 44 S.Google Scholar
  4. Marten, M. (1996): Erfahrungen mit dem Routinebetrieb kontinuierlicher BiotestVerfahren in der Gütemeßstation in Karlsruhe am Rhein. — Deutsche Gesellschaft für Limnologie e. V. (1997), Tagungsbericht 1996, Band II, Kaltenmeier Söhne, Krefeld: 660–664.Google Scholar
  5. Marten, M. (in press a): Biocoenotic Monitoring of faunistic changes — trends in species composition of macrozoobenthos of the upper River Rhine during the past century. — International Review of Hydrobiologie. Google Scholar
  6. Marten, M. (in press b): Biocoenotic Trendmonitoring of Macrozoobenthos in rivers of Baden-Württemberg. — Aquatic Ecology. Google Scholar
  7. Schwörer, R. (1999): Erprobung dreier Biotestverfahren zur Gewässerüberwachung unter Laborbedingungen. — Diplomarbeit im Fachgebiet Pflanzenökologie und Ökotoxikologie der Universität Hohenheim.Google Scholar
  8. WIR (Bund- Lander-. Projektgruppe “Wirkungstests Rhein”) (1995): Kontinuierliche Biotestverfahren zur Uberwachung des Rheins. — Umweltbundesamt (Hrsg.), Bericht 1/ 95, Erich Schmidt, Berlin: 289 S.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • M. Marten
    • 1
  1. 1.Landesanstalt für Umweltschutz Baden — WürttembergKarlsruheGermany

Personalised recommendations