Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 68))

Abstract

Molecules that function as linear templates are promising tools for gaining control of chemical reactivity that approaches the nanometer-scale level, and beyond (i.e. > 10 Å) [1,2]. Such molecules possess an ability to deliberately juxtapose, and, in doing so, force two reactant molecules in position for reaction. Such control of reactivity is achieved, similar to proteins and DNA [1], by way of molecular assembly processes involving noncovalent forces (e.g. hydrogen bonds), which enables reactions to proceed with regio- and stereocontrol not displayed by an individual reactant molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S. and Anderson, H.L. (2000) Templates in Organic Synthesis: Definitions and Roles, in Diederich, F. and Stang, PL (eds.), Templated Organic Synthesis, Wiley-VCH, Weinheim, pp. 1–38.

    Google Scholar 

  2. Drexler, K.E. (1981) Molecular Engineering: An Approach to the Development of General Capabilities for Molecular Manipulation, Proc. Natl. Acad. Sci. USA 78, 5275–5278. (b) Drexler, K.E. (1990) Engines of Creation. The Coming Era of Nanotechnology, Anchor Books, New York.

    Article  CAS  Google Scholar 

  3. Papaefstathiou, GS., Kipp, AL, and MacGillivray, L.R. (2001) Exploiting Modularity in Template-Controlled Synthesis: A New Linear Template to Direct Reactivity Within Discrete Hydrogen-Bonded Molecular Assemblies in the Solid State, Chem. Commun., in press, (b) MacGillivray, L.R, Reid, J.L., and Ripmeester, J. A. (2000) Supramolecular Control of Reactivity in the Solid State Using Linear Molecular Templates, J. Am. Chem. Soc. 122, 7817-7818. (c) MacGillivray, L.R., Siebke, M.M., and Reid, J.L. (2001) Co-Planar Recognition by a Rebek Cleft is Provided by Cooperative Structural Effects Involving a Combination of O-H O, O-H N, and C-H-O Forces, Org. Lett. 3, 1257-1260.

    Google Scholar 

  4. Ramamurthy, V. and Venkatesan, K. (1987) Photochemical Reactions of Organic Crystals, Chem. Rev. 87, 433–481.

    Article  CAS  Google Scholar 

  5. Anastas, P.T. and Warner, J.C. (1998) Green Chemistry: Theory and Practice, Oxford University Press, New York, (b) Huddieston, LG., Willauer, H.D., Griffin, S.T., Visser, A.E., and Rogers, R.D. (1999) Green Separation Science & Technology: Using Environmentally Benign Polymers to Replace VOCs in Industrial Scale Liquid/Liquid Separations, in Green Chemistry and Engineering Conference Proceedings: Implementing Vision 2020 for the Environment, American Chemical Society, Washington, pp. 225-228.

    Google Scholar 

  6. Trnka, T.M. and Grubbs, R.H. (2001) The Development of L2X2Ru=CHR Olefin Metathesis Catalysts: An Organometallic Success Story, Acc. Chem. Res. 34, 18–29.

    Article  CAS  Google Scholar 

  7. Schmidt, G.M.J. (1971) Photodimerization in the Solid State, Pure Appl. Chem. 27, 647–678. (b) Elgavi, A., Green, B.S., and Schmidt, G.M.J. (1973) Reactions in Chiral Crystals. Optically Active Heterophotodimer Formation from Chiral Single Crystals, J. Am. Chem. Soc. 95, 2058-2059.

    Article  CAS  Google Scholar 

  8. Coates, G.W., Dunn, A.R., Henling, L.M., Ziller, J.W., Lobkovsky, E.B., and Grubbs, R.H. (1998) Phenyl-Perfluorophenyl Stacking Interactions: Topochemical [2+2] Photodimerization and Photopolymerization of Olefinic Compounds, J. Am. Chem. Soc. 120, 3641–3649. (b) Feldman, K.S. and Campbell, R.F. (1995) Efficient Stereo-and Regiocontrolled Alkene Photodimerization through Hydrogen Bond Enforced Preorganization in the Solid State, J. Org. Chem. 60, 1924-1925. (c) Sharma, C.V.K., Panneerselvam, K., Shimoni, L., Katz, H., Carrell, H.L., and Desiraju, G.R. (1994) 3-(3’,5’-Dinitrophenyl)-4-(2’,5’-dimethoxyphenyl) cyclobutane-l,2-dicarboxylic Acid: Engineered Topochemical Synthesis and Molecular and Supramolecular Properties, Chem. Mater. 6, 1282-1292. (d) Maekawa, Y., Kato, S., and Hasegawa, M. (1991) Quantitative Formation of a Highly Strained Tricyclic [2.2]Paracyclophane Derivative from a Mixed Crystal of Ethyl and Propyl α-Cyano-4-[2-(4-pyridyl)ethenyl]cinnamates through a Topochemical Reaction, J. Am. Chem. Soc. 113, 3867-3872. (e) Sarma, J.A.R.P. and Desiraju, G.R (1986) The Role of Cl Cl and C-H O Interactions in the Crystal Engineering of 4-Á Short-Axis Structures, Acc. Chem. Res. 19, 222-228. (f) Gnanaguru, K., Ramasubbu, N., Venkatesan, K., and Ramamurthy, V. (1985) A Study on the Photochemical Dimerization of Coumarins in the Solid State, J. Org. Chem. 50, 2337-2346. (g) Desiraju, G.R, Kamala, R, Kumari, B.H., and Sarma, J.A.R.P. (1984) Crystal Engineering via Non-Bonded Interactions Involving Oxygen. X-Ray Crystal Structure of 3,4-Methylenedioxycinnamic Acid and 3,4-Dimethoxycinnamic Acid, J. Chem. Soc, Perkin Trans. 2 181-189. (h) Jones, W., Nakanishi, H., Theocharis, C.R., and Thomas, J.M. (1980) Engineering Organic Crystals so as to Control the Photoreactivity of the Reactants and the Crystallinity of the Products, J. Chem. Soc, Chem. Commun. 610-611.

    Article  CAS  Google Scholar 

  9. Brett, T.J., Alexander, J.M., Clark, J.L., Ross II, CR, Harbison, G.S., and Stezowski, J.J. (1999) Chemical Insight from Crystallographic Disorder: Structural Studies of a Supramolecular ß-Cyclodextrin/Coumarin Photochemical System, Chem. Commun. 1275–1276. (b) Tanaka, K., Toda, F., Mochizuki, E., Yasui, N., Kai, Y., Miyahara, I., and Hirotsu, K. (1999) Enantioselective Single-Crystal-to-Single-Crystal Photodimerization of Coumarin and Thiocoumarin in Inclusion Compounds with Chiral Host Compounds, Angew. Chem., Int. Ed. Engl. 38, 3523-3525. (c) Ito, Y., Borecka, B., Trotter, J., and Scheffer, J.R (1995) Control of Solid-State Photodimerization of trans-Cinnamic Acid by Double Salt Formation with Diamines, Tetrahedron Lett. 36, 6083-6086. (d) Ito, Y., Borecka, B., Olovsson, G., Trotter, J., and Scheffer, J.R. (1995) Control of the Solid-State Photodimerization of Some Derivatives and Analogs of trans-Cinnamic Acid by Ethylenediamine, Tetrahedron Lett. 36, 6087-6090. (e) Takagi, K., Usami, H., Fukaya, H., and Sawaki, Y. (1989) Spatially Controlled Photocycloaddition of a Clay-Intercalated Stilbazolium Cation, J. Chem. Soc., Chem. Commun. 1174-1175.

    Google Scholar 

  10. Holman, K.T. and Ward, M.D. (2000) Metric Engineering of Crystalline Inclusion Compounds by Structural Mimicry, Angew. Chem., Int. Ed. Engl. 39, 1653–1656.

    Article  CAS  Google Scholar 

  11. Aoyama, Y., Endo, K., Anzai, T., Yamaguchi, Y., Sawaki, T., Kobayashi, K., Kanehisa, N., Hashimoto, H., Kai, Y., and Masuda, H. (1996) Crystal Engineering of Stacked Aromatic Columns. Three-Dimensional Control of the Alignment of Orthogonal Aromatic Triads and Guest Quinones via Self-Assembly of Hydrogen-Bonded Networks, J. Am. Chem. Soc. 118, 5562–5571.

    Article  CAS  Google Scholar 

  12. MacGillivray, L.R. and Atwood, J.L. (1997) Rational Design of Multi-Component Calix[4]arenes and Control of Their Alignment in the Solid State, J. Am. Chem. Soc. 119, 6931–6932.

    Article  CAS  Google Scholar 

  13. Vansant, J., Toppet, S., Smets, G., Declercq, J.P., Germain, G., and Van Meerssche, M. (1980) Azastilbenes. 2. Photodimerization, J. Org. Chem. 45, 1565–1573.

    Article  CAS  Google Scholar 

  14. Kleinschroth, J. and Hopf, H. (1982) The Chemical Behavior of Multibridged [2n]Cyclophanes, Angew. Chem., Int. Ed. Engl. 21, 469–480. (b) Nishimura, J., Nakamura, Y., Hayashida, Y., and Kudo, T. (2000) Stereocontrol in Cyclophane Synthesis: A Photochemical Method to Overlap Aromatic Rings, Acc. Chem. Res. 33, 679-686.

    Article  Google Scholar 

  15. Amoroso, A.J., Thompson, A.M.W.C, Maher, J.P., McCleverty, J.A., and Ward, M.D. (1995) Di-, Tri-, and Tetranucleating Pyridyl Ligands which Facilitate Multicenter Magnetic Exchange between Paramagnetic Molybdenum Centers, Inorg. Chem. 34, 4828–4835.

    Article  CAS  Google Scholar 

  16. Prautzsch, V., Ibach, S., and Vögtle, F. (1999) Very Large Cyclic Compounds, J. Incl. Phen. Macroc. Chem. 33, 427–458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Macgillivray, L.R. (2002). Controlling Molecular Synthesis in the Solid State Using Linear Templates. In: Domenicano, A., Hargittai, I. (eds) Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals. NATO Science Series, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0546-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0546-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0710-1

  • Online ISBN: 978-94-010-0546-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics