Skip to main content

Pulse Confinement in Optical Fibers with Random Dispersion

  • Chapter
Nonlinearity and Disorder: Theory and Applications

Part of the book series: NATO Science Series ((NAII,volume 45))

  • 262 Accesses

Abstract

Short range correlated uniform noise in the dispersion coefficient, inherent in many types of optical fibers, broadens and eventually destroys all initially ultra-short pulses. However, under the constraint that the integral of the random component of the dispersion coefficient is set to zero (pinned), periodically or quasi-periodically along the fiber, the dynamics of the pulse propagation changes dramatically. For the case that randomness is present on top of constant positive dispersion, the pinning restriction significantly reduces average pulse broadening. If the randomness is present on top of piecewise constant periodic dispersion, the pinning may even provide probability distributions of pulse parameters that are numerically indistinguishable from the statistically steady case. The pinning method can be used to both manufacture better fibers and upgrade existing fiber links.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Steinmeyer, D.H. Sutter, L. Gallmannn, N. Matuschek, U. Keller, Science 286, 1507 (1999); G.A. Thomas, A.A. Ackerman, P.R. Prunchal, S.L. Cooper, Physics Today 53, 9, 30 (2000)

    Article  Google Scholar 

  2. J.N. Elgin, Phys. Lett. 110A, 441 (1985); Phys. Rev. E 47, 4331 (1993);J.P. Gordon, H.A. Haus, Opt.Lett. 11, 665 (1986); G. Falkovich, I. Kolokolov, V. Lebedev, S. Turitsyn, preprint 04/2000, http://xyz.lanl.gov/abs/nlin.CD/0004001/abs/nlin.CD/0004001.

    MathSciNet  Google Scholar 

  3. CD. Poole, Opt.Lett. 13, 687 (1988); 14, 523 (1989); CD. Poole, J.H. Winters, and J.A. Nagel, Opt.Lett. l6, 372 (1991); N. Gisin, Opt.Comm. 86, 371-373 (1991); P.K. Wai, C.R.Menyak, H.H. Chen, Opt.Lett. 16, 1231 (1991).

    Article  Google Scholar 

  4. G.P. Agrawal, Fiber-optic communication systems, New York, Wiley, 1997.

    Google Scholar 

  5. L.F. Mollenauer, P.V. Mamyshev, M.J. Neubelt, Opt.Lett. 21, 1724 (1996).

    Article  Google Scholar 

  6. L.F. Mollenauer, et. al. Opt. Lett. 25, 704, (2000).

    Article  Google Scholar 

  7. All parameters are presented here in dimensionless units which transform to realworld fiber units according to the following rules. The envelope of the electric field is in the form, where P0 is the peak pulse power. The propagation variable is, where x is distance along the fiber and α is the Kerr nonlinearity coefficient. The Kerr coefficient can be expressed in terms of other fiber parameters,, where n2 is the nonlinear component of fiber refractive index, λ is operating wavelength, and Seff is an effective core area of the fiber. The spatial coordinate is t = т /тo, where т is in the reference frame of the group velocity and т0 is the characteristic pulse width. The dispersion coefficient is. where β2 is the second order dispersion parameter. The typical parameters for dispersion shifted fiber are: λ = 1550nm, тo= 7.01ps, x = 50km, Po = 4mW, β2 = 2 ps2/km, α = 10 Wt-1km-1.

    Google Scholar 

  8. V. E. Zakharov, A.B. Shabat, Sov. Phys.JETP 34, 62 (1972).

    MathSciNet  Google Scholar 

  9. C. Lin, H. Kogelnik, L.G. Cohen, Opt.Lett. 5, 476 (1980).

    Article  Google Scholar 

  10. I. Gabitov, S.K. Turitsyn, Opt. Lett. 21, 327 (1996); JETP Lett. 63, 861 (1996).

    Article  Google Scholar 

  11. N. Smith, F. M. Knox, N.J. Doran, K.J. Blow, I. Bennion, Electron.Lett.32, 54 (1996).

    Article  Google Scholar 

  12. S.K. Turitsyn, T. Schafer, K.H. Spatschek, V.K. Mezentsev, Opt.Comm.163, 122 (1999).

    Article  Google Scholar 

  13. D.Le. Guen, et al., Post Deadline Paper, OFC/IOOC’99, San Diego, CA, USA.

    Google Scholar 

  14. F. Kh. Abdullaev, J.G. Caputo, M.P. Sorensen, in New trends in Optical Soliton Transmission Systems, A. Hasegawa, Eds. (Kluwer, Dordrecht, 1998); F.Kh. Abdullaev, J. C. Bronski and G. Papanicolaou, Physica D135, 369 (2000).

    Google Scholar 

  15. F. Kh. Abdullaev, B. B. Baizakov, Opt.Lett.25, 93 (2000).

    Article  Google Scholar 

  16. R. Ohhira, A. Hasegawa, Y. Kodama, Opt.Lett. 20, 701 (1995).

    Article  Google Scholar 

  17. M. Chertkov, I. Gabitov, J. Moeser, Z. Toroczkai, unpublished.

    Google Scholar 

  18. Movies of single realization dynamics in z, comparative plot of the dispersion profile with and without compensation, and more figures characterizing statistics of the pulse propagation (in the various cases considered) are available at http:/cnls.lanl.gov/∼chertkov/Fiber.

    Google Scholar 

  19. Notice that for the case with the same pinning period l = 1 but greater D = 2.5, a minor, but still observable degradation of pulse occurred. This is consistent with the statement concerning the efficiency of the pinning made in the text: the greater D, the lower the critical pinning period.

    Google Scholar 

  20. Real fiber spans, usually each of length 0.5 — 2 ZNL, are not homogeneous, as they are often produced at different times by different companies.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chertkov, M., Gabitov, I., Moeser, J. (2001). Pulse Confinement in Optical Fibers with Random Dispersion. In: Abdullaev, F., Bang, O., Sørensen, M.P. (eds) Nonlinearity and Disorder: Theory and Applications. NATO Science Series, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0542-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0542-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0192-5

  • Online ISBN: 978-94-010-0542-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics