Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 48))

  • 786 Accesses

Abstract

Recently, the heavy fermion compound CeRhIn5, which superconducts at the relatively high temperature of 2.1 K at a pressure of 1.7 GPa, has been the subject of a great deal of interest. Some magnetically correlated-eleetron systems are known to superconduct under pressure at a quantum critical point where the magnetic ordering temperature goes to 0 K. The way in which a system approaches this quantum critical point, namely the shape of the magnetic ordering temperature as a function of pressure Tc(P), is due to a competition between magnetic order and the Kondo effect and is clearly seen in the correlated-electron systems CePdSb and YbNiSa It has been proposed that two dimensional systems will superconduct at higher temperature than their three dimensional analogs when the cooper pairing mechanism is magnetic in origin. The system CenRhIn3n+2 (n=1,2 or ∞;) is a perfect candidate to test this hypothesis as the n=∞; system is the well-characterized 3D antiferromagnet CeIn3, while the n=1 and 2 compounds crystallize in a tetragonal (qausi-2D) structure. Field-dependent heat capacity and de Haas-van Alphen measurements have been performed to discern the electronic and magnetic anisotropies in these compounds. The results clearly show that the properties are more two-dimensional as one goes from CeIn3 to CeRnIn3. A comparison of the phase diagram of CeRh1-xIrxIn5 to high temperature superconducting oxides, which also have quasi-2D electronic structures, gives compelling evidence that the Cooper pairing mechanism is identical, namely magnetic in origin, in both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Doniach, in Valence Instability and Related Narrow Band Phenomena, edited by R. D. Parks (Plenum, New York, 1977).

    Google Scholar 

  2. S. Doniach, Physica B 231-234, 231 (1977).

    Google Scholar 

  3. A. L. Cornelius, A. K. Gangopadhyay, J. S. Schilling, and W. Assmus, Phys. Rev. B 55, 14109 (1997).

    Article  CAS  Google Scholar 

  4. A. L. Cornelius, J. S. Schilling, D. Mandrus, and J. D. Thompson, Phys, Rev. B 52, R15699 (1995).

    Article  CAS  Google Scholar 

  5. H. Hegger et al., Phys. Rev. Lett. 84, 4986 (2000).

    Article  CAS  Google Scholar 

  6. J. D. Thompson et al., cond-mat/0012260, to appear in J. Magn. Magn. Mater. (2001).

    Google Scholar 

  7. P. C. Canfield and Z. Fisk, Phil. Mag. B 65, 1117 (1992).

    Article  CAS  Google Scholar 

  8. S. K. Malik and D. T. Adroja, Phys. Rev. B 43, 6295 (1991).

    Article  CAS  Google Scholar 

  9. O. Trovarelii, J. G. Sereni, G. Schmerber, and J. P. Kappler, Phys. Rev. B 49, 15179(1994).

    Article  Google Scholar 

  10. A. L. Cornelius, PhD. thesis, Washington University, St. Louis, 1996. U.S. Klotz, J. S. Schilling, and P. Müller, in Frontiers of High-Pressure Research, edited by H. D. Hochheimer and E. D. Etters (Plenum, New York, 1991).

    Google Scholar 

  11. A. L. Cornelius and J. S. Schilling, Phys. Rev. B 49, 3955 (1994).

    Article  CAS  Google Scholar 

  12. J. S. Schilling, Adv. Phys. 28, 657 (1979).

    Article  CAS  Google Scholar 

  13. J. D. Thompson and J. M. Lawrence, in Handbook on the Physcis and Chemistry of Rare Earths (North-Holland, Amsterdam, 1994), Vol. 19, Chap. 133, pp. 383–477.

    Article  Google Scholar 

  14. P. C. Riedi et ai, Physica B 199-200, 558 (1994).

    Article  Google Scholar 

  15. G. Sparn, J. D. Thompson, and A. Hamzić, J. Alloys Comp. 181, 197 (1992).

    Article  CAS  Google Scholar 

  16. Y. N. Grin, Y. P. Yarmolyuk, and E. L Gladyshevskii, Sov. Phys.Crystailogr. 24, 137(1979).

    Google Scholar 

  17. Y. N. Grin, P. Rogl, and K. Hiebl, J. Less-Common Met. 121, 497 (1986).

    Article  CAS  Google Scholar 

  18. J. M. Lawrence and S. M. Shapiro, Phys. Rev. B 22, 4379 (1980).

    Article  CAS  Google Scholar 

  19. W. Bao et al., Phys. Rev. B 62, R14621 (2000).

    Article  CAS  Google Scholar 

  20. W. Bao et al.,., Phys. Rev. B 64, 020401(R) (2000).

    Article  Google Scholar 

  21. A. Wasserman, M. Springford, and A. C. Hewson, J. Phys. Condens. Matter 1, 2669(1989).

    Article  Google Scholar 

  22. M. Springford, Physica B 171, 151 (1991).

    Article  CAS  Google Scholar 

  23. G. G Lonzarich, J. Maga Magn. Mater. 76-77, 1 (1988).

    Article  CAS  Google Scholar 

  24. A. Wasserman and M. Springford, Adv. Phys. 45, 471 (1996).

    Article  CAS  Google Scholar 

  25. L. Taillefer, J. Flouquet, and G. G. Lonzarich, Physica B 169, 257 (1991).

    Article  CAS  Google Scholar 

  26. P. Fertey, M. Poirier, and H. Muller, Phys. Rev. B 57, 14357 (1998).

    Article  CAS  Google Scholar 

  27. J. S. Brooks et al., Phys. Rev. B 59, 2604 (1999).

    Article  CAS  Google Scholar 

  28. S. Uji et al., Phys. Rev. B 55, 12446 (1997).

    Article  Google Scholar 

  29. A. A. House et al., J. Phys.: Condens. Matter 8, 10361 (1996).

    Article  CAS  Google Scholar 

  30. S. Valfells et al., Phys. Rev. B 56, 2585 (1997).

    Article  CAS  Google Scholar 

  31. D. Hall et al., Phys. Rev. B 64, 064506 (2001).

    Article  Google Scholar 

  32. Y. Haga et al., Phys. Rev. B 63, 060503(R) (2001).

    Article  Google Scholar 

  33. D. Hall et al., cond-mat/0102533 (unpublished).

    Google Scholar 

  34. A. Berton et al., J. Phys. (Paris) 40, C5 (1979).

    Article  Google Scholar 

  35. R. Settai et al., J. Magn. Magn. Mater. 140-144, 1153 (1995).

    Article  CAS  Google Scholar 

  36. Y. Ōn uki and A. Hasegawa, in Handbook on the Physics and Chemistry of Rare Earths (North-Holland, Amsterdam, 1995), Vol. 20, Chap. 135, p. 1.

    Article  Google Scholar 

  37. R. G. Goodrich, private communication.

    Google Scholar 

  38. A. L. Cornelius et al., Phys. Rev. B 62, 14181 (2000).

    Article  CAS  Google Scholar 

  39. C. D. Bredl, J. Magn. Magn. Mat. 63-64, 355 (1987).

    Article  CAS  Google Scholar 

  40. N. H van Dijk et al., Phys. Rev. B 56, 14493 (1997).

    Article  Google Scholar 

  41. S. Murayama, C. Sekine, A. Yokoyanagi, and Y. Ōnuki, Phys. Rev. B 56, 11092(1997).

    Article  CAS  Google Scholar 

  42. V. I. Sidorov (unpublished).

    Google Scholar 

  43. G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

    Article  CAS  Google Scholar 

  44. The software used to measure the heat capacity uses average values to fit the thermal relaxation data From the raw traces, the transitions which we have assigned as first order are clearly first order in nature. Experience tells us the averaging method underestimates the value of the heat capacity near the peak of the first order transition by a factor of four or five.

    Google Scholar 

  45. W. Bao (private communication)

    Google Scholar 

  46. N. D. Mathur et al., Nature 394, 39 (1998).

    Article  CAS  Google Scholar 

  47. C. Petrovic et al., J. Phys.:Condens. Matter 13, L337 (2001).

    Article  CAS  Google Scholar 

  48. C. Petrovic et al., Europhys. Lett. 53, 354 (2001).

    Article  CAS  Google Scholar 

  49. P. Monthoux and G. G Lonzarich, Phys. Rev. B 63, 054529 (2001).

    Article  Google Scholar 

  50. P. G. Pagliuso et al., cond-mat/0101316(unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cornelius, A. (2001). Effect of Pressure on Magnetism in Correlated-Electron Systems and the Role of Dimensionality in CenRhIn3n+2 (n=l,2 or ∞). In: Hochheimer, H.D., Kuchta, B., Dorhout, P.K., Yarger, J.L. (eds) Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials. NATO Science Series, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0520-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0520-3_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0160-4

  • Online ISBN: 978-94-010-0520-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics