Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 43))

Abstract

We compute both the force and the torque acting on a nematic disclination of arbitrary shape in space. The disclination’s core, where the material is thought of as melted in its isotropic phase, is not necessarily assumed to be a circular cylinder. The effect of the core’s shape on the forces restoring equilibrium is also studied in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dafermos, CM. (1970) Q. Jl. Mech. appl. Math., 23, S49–S64.

    Article  Google Scholar 

  2. Denniston, C. (1996) Phys. Rev. B, 54, 6272–6275.

    Article  ADS  Google Scholar 

  3. Ericksen, J.L. (1995) ZAMP, 46, S247–S271.

    MathSciNet  MATH  Google Scholar 

  4. Eshelby, J.D. (1980) Phil. Mag., 42, 359–367.

    Article  Google Scholar 

  5. Happel, J. and Brenner, H. (1965) Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  6. Kléman, M. and Friedel, J. (1969) J. Phys. Colloque, C4, 43–53.

    Google Scholar 

  7. Gurtin, M.E. (2000) Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York.

    Google Scholar 

  8. Maugin, G.A. and Trimarco, C. (1995) Int. J. Engng. Sci., 33, 1663–1678.

    Article  MathSciNet  MATH  Google Scholar 

  9. Pismen, L.M. and Rubinstein, J. (1992) Quart. Appl. Math., 50, 535–545.

    MathSciNet  Google Scholar 

  10. Richardson, G. (2000) Q. Jl. Mech. appl. Math., 53, 49–71.

    Article  MATH  Google Scholar 

  11. Ryskin, G. and Kremenetsky, M. (1991) Phys. Rev. Lett., 67, 1574–1577.

    Article  ADS  Google Scholar 

  12. Rosso, R. and Virga, E.G. (2000) Forthcoming.

    Google Scholar 

  13. Sonnet, A.M. and Virga, E.G. (1997) Phys. Rev. E, 56, 6834–6842.

    Article  MathSciNet  ADS  Google Scholar 

  14. Sonnet, A.M. and Virga, E.G. (2000) This volume.

    Google Scholar 

  15. Virga, E.G. (1994) Variational Theories for Liquid Crystals. London, Chapman & Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rosso, R., Virga, E.G. (2001). Restoring Forces on Nematic Disclinations. In: Lavrentovich, O.D., Pasini, P., Zannoni, C., Žumer, S. (eds) Defects in Liquid Crystals: Computer Simulations, Theory and Experiments. NATO Science Series, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0512-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0512-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0170-3

  • Online ISBN: 978-94-010-0512-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics