Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 75))

Abstract

Parallel computers are increasingly used in scientific computing. They enable one to perform large scale computations. New algorithms which are well suited to such architectures have to be designed. Domain decomposition methods are a very natural way to exploit the possibilities of multiprocessor computers, but such algorithms are very useful when used on monoprocessor computers as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. Achdou and Y. A. Kuznetsov, Substructuring preconditioners for finite element methods on nonmatching grids, East-West J. Numer. Math. 3 (1) (1995), 1–28.

    MathSciNet  MATH  Google Scholar 

  2. Y. Achdou, Y. Kuznetsov, and 0. Pironneau, Substructuring preconditioners for the Q1 mortar element method, Numer. Math. 71 (1995), 419–449.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Achdou, Y. Maday, and O. B. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions, SIAM J. Numer. Anal. 36 (2) (1999), 551–580.

    Article  MathSciNet  Google Scholar 

  4. Y. Achdou, P. L. Tallec, F. Nataf, and M. Vidrascu, A domain decoposition preconditioner for an advection-diífusion problem, Comput. Methods Appl. Mech. Engrg. 184 (2000), 145–170.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Braess and W. Dahmen, Stability estimates of the mortar finite element method for 3-dimensional problems, East-West J. Numer. Math. 6 (4) (1998), 249–264.

    MathSciNet  MATH  Google Scholar 

  6. J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in: Domain Decomposition Methods (T. Chan et al., eds.), SIAM, Philadelphia, PA, 1989, 3–16.

    Google Scholar 

  7. C. Bernardi, Y. Maday, and A. T. Patera, Domain decomposition by the mortar element method, in: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters (H. G. Kaper and M. Garbey, eds.), NATO ASI Ser. C 384, Kluwer, Dordrecht, 1993, 269–286.

    Chapter  Google Scholar 

  8. X.-C. Cai, M. A. Casarin, F. W. Elliott Jr., and 0. B. Widlund, Overlapping Schwarz algorithms for solving Helmholtz’s equation, in: Domain Decomposition Methods 10 (J. Mandel et al, eds.), Contemp. Math. 218, Amer. Math. Soc., Providence, RI, 1998, 391–399.

    Chapter  Google Scholar 

  9. X.-C. Cai, M. Dryja, and M. V. Sarkis, Overlapping nonmatching grid mortar element methods for elliptic problems, SIAM J. Numer. Anal. 36 (1999), 581–606.

    Article  MathSciNet  Google Scholar 

  10. F. Collino, S. Ghanemi, and P. Joly, Domain decomposition methods for harmonic wave propagation : a general presentation, Comput. Methods Appl. Mech. Engrg. (2-4) (2000), 171–211.

    Article  MathSciNet  Google Scholar 

  11. T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Domain Decomposition Methods, SIAM, Philadelphia, PA, 1989.

    MATH  Google Scholar 

  12. P. Chevalier, Méthodes numériques pour les tubes hyperfréquences. Résolution par décomposition de domaine, Ph.D. thesis, Université Paris VI, 1998.

    Google Scholar 

  13. T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in: Acta Numerica 1994, Cambridge University Press, 1994, 61–143.

    Google Scholar 

  14. L. C. Cowsar, J. Mandel, and M. F. Wheeler, Balancing domain decomposition for mixed finite elements, Math. Comp. 64 (211) (1995), 989–1015.

    Article  MathSciNet  MATH  Google Scholar 

  15. X.-C. Cai and O. B. Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Statist. Comput. 13 (1) (1992), 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Després, Domain decomposition method and the Helmholtz problem. II, in: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993), SIAM, Philadelphia, PA, 1993, 197–206.

    Google Scholar 

  17. B. Després, P. Joly, and J. E. Roberts, A domain decomposition method for the harmonic Maxwell equations, in: Iterative Methods in Linear Algebra (Brussels, 1991), North-Holland, Amsterdam, 1992, 475–484.

    Google Scholar 

  18. M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math. 72 (3) (1996), 313–348.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (139) (1977), 629–651.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Engquist and H.-K. Zhao, Absorbing boundary conditions for domain decomposition,Appl. Numer. Math. 27 (4) (1998), 341–365.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg. 32 (1991), 1205–1227.

    Article  MATH  Google Scholar 

  22. D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevier (1992).

    MATH  Google Scholar 

  23. M. J. Gander, F. Magoulès, and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Numer. Anal (2001), to appear.

    Google Scholar 

  24. R. Higdon, Absorbing boundary conditions for difference approximations to the multi-dimensional wave equations, Math. Comp. 47 (176) (1986), 437–459.

    MathSciNet  MATH  Google Scholar 

  25. T. Hagstrom, R. P. Tewarson, and A. Jazcilevich, Numerical experiments on a domain decomposition algorithm for nonlinear elliptic boundary value problems, Appl. Math. Lett. 1 (3), 1988.

    Google Scholar 

  26. C. Japhet, Optimized Krylov-Ventcell method, Application to convection-diffusion problems, in: Proc. 9th International Conference Domain Decomposition Methods (P. E. Bjørstad et al., eds.), 1998, 382–389.

    Google Scholar 

  27. C. Japhet and F. Nataf, The best interface conditions for domain decomposition methods: Absorbing boundary conditions, to appear in: Artificial Boundary Conditions, with Applications to Computational Fluid Dynamics Problems (L. Tourrette, ed.), Nova Science, 2000.

    Google Scholar 

  28. C. Japhet, F. Nataf, and F. Rogier, The optimized order 2 method. Application to convection-diffusion problems, Future Generation Computer Systems FUTURE 18, 2001.

    Google Scholar 

  29. A. Klawonn and O. B. Widlund, FETI and Neumann-Neumann iterative sub-structuring methods: Connections and new results, Comm. Pure Appl. Math. 54 (2001), 57–90.

    Article  MathSciNet  MATH  Google Scholar 

  30. Proc. Eleventh International Conference Domain Decomposition Methods, 1998 (C. H. Lai et al., eds.).

    Google Scholar 

  31. P.-L. Lions, On the Schwarz alternating method. III: A variant for nonoverlapping subdomains, in: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (T. F. Chan et al., eds.), SIAM, Philadelphia, PA, 1990.

    Google Scholar 

  32. P. Le Tallec, Domain decomposition methods in computational mechanics, in:Computational Mechanics Advances vol. 1 (2) (J. Tinsley Oden, ed.), North-Holland, Amsterdam, 1994, 121–220.

    Google Scholar 

  33. F. Nataf, Absorbing boundary conditions in block Gauss-Seidel methods for convection problems, Math. Models Methods Appl. Sci. 6 (4) (1996), 481–502.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. V. Nepomnyaschikh, Application of domain decomposition to elliptic problems on with discontinuous coefficients, in: Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski et al., eds.), SIAM, Philadelphia, PA, 1991, 242–251.

    Google Scholar 

  35. F. Nier, Remarques sur les algorithmes de décomposition de domaines, in: Séminaire : ïquations aux Dérivées Partielles, 1998-1999, Exp. No. IX, 26, ïcole Polytechnique, 1999.

    Google Scholar 

  36. F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm, Math. Models Methods Appl. Sci. 5 (1) (1995), 67–93.

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Nataf, F. Rogier, and E. de Sturler, Optimal interface conditions for domain decomposition methods, Technical report, CMAP (ïcole Polytechnique), 1994.

    Google Scholar 

  38. Proc. Ninth International Conference on Domain Decomposition Methods, 1997, (M. S. Espedal el al., eds.).

    Google Scholar 

  39. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Sci. Publ., Oxford University Press, 1999.

    MATH  Google Scholar 

  40. B. F. Smith, P. E. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

    MATH  Google Scholar 

  41. F. Willien, I. Faille, F. Nataf, and F. Schneider, Domain decomposition methods for fluid flow in porous medium, in: 6th European Conference on the Mathematics of Oil Recovery, 1998.

    Google Scholar 

  42. B. Wohlmuth, Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers, SIAM J. Numer. Anal 36 (1999), 1636–1658.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nataf, F. (2002). Interface connections in domain decomposition methods. In: Bourlioux, A., Gander, M.J., Sabidussi, G. (eds) Modern Methods in Scientific Computing and Applications. NATO Science Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0510-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0510-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0782-8

  • Online ISBN: 978-94-010-0510-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics