Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 83))

  • 280 Accesses

Abstract

The dual Meissner effect scenario of confinement is analysed using exact renormalisation group (ERG) equations. In particular, the low energy regime of SU (2) Yang-Mills (YM) is studied in a maximal Abelian gauge (MAG). It is shown that under general conditions the effective action derived when integrated using ERG methods contains the relevant degrees of freedom for confinement. In addition, the physics in the confining regime is dual to that of the broken phase of an Abelian Higgs model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Nambu, Phys. Rev. D 10 (1974) 4262.

    ADS  Google Scholar 

  2. S. Mandelstam, Phys. Rept. 23 (1976) 245.

    Article  ADS  Google Scholar 

  3. G. 't Hooft, Nucl. Phys. B 190 (1981) 455.

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Suzuki and I. Yotsuyanagi, Phys. Rev. D 42 (1990) 4257

    ADS  Google Scholar 

  5. S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O. Miyamura, S. Ohno and T. Suzuki, Phys. Lett. B 272 (1991) 326 [Erratum-ibid. B 281 (1991) 416].

    ADS  Google Scholar 

  6. M. Reuter and C. Wetterich, Nucl. Phys. B 417 (1994) 181; U. Ellwanger, Phys. Lett. B 335 (1994) 364 [hep-th/9402077]; M. Bonini, M. D'Attanasio and G. Marchesini, Nucl. Phys. B 421 (1994) 429 [hep-th/9312114].

    Article  ADS  Google Scholar 

  7. D. F. Litim and J. M. Pawlowski, Phys. Lett. B 435 (1998) 181 [hep-th/9802064].

    ADS  Google Scholar 

  8. U. Ellwanger, Nucl. Phys. B 531 (1998) 593 [hep-ph/9710326]; Eur. Phys. J. C 7 (1999) 673 [hep-ph/9807380]; Nucl. Phys. B 560 (1999) 587 [hep-th/9906061].

    Article  ADS  Google Scholar 

  9. D. F. Litim and J. M. Pawlowski, in Proceedings of the Workshop on the Exact Renormalisation Group, Faro, Portugal, Sep 1998, pgs. 168–185 [hep-th/9901063]; Nucl. Phys. Proc. Suppl. 74 (1999) 325 [hep-th/9809020].

    Google Scholar 

  10. F. Freire and C. Wetterich, Phys. Lett. B 380 (1996) 337 [hep-th/9601081]; F. Freire, D. F. Litim and J. M. Pawlowski, Phys. Lett. B 495 (2000) 256 [hep-th/0009110].

    ADS  Google Scholar 

  11. F. Freire, Phys. Lett. B 526 (2002) 405 [hep-th/0110241].

    MathSciNet  ADS  Google Scholar 

  12. A. Hart and M. Teper, Phys. Rev. D 55 (1997) 3756 [hep-lat/9606007].

    ADS  Google Scholar 

  13. M. Schaden, “Mass generation in continuum SU(2) gauge theory in covariant Abelian gauges”, hep-th/9909011; “Mass generation, ghost condensation and broken symmetry: SU(2) in covariant Abelian gauges”, hep-th/0108034.

    Google Scholar 

  14. K. I. Kondo and T. Shinohara, Phys. Lett. B 491 (2000) 263 [hep-th/0004158].

    ADS  Google Scholar 

  15. F. V. Gubarev and V. I. Zakharov, Phys. Lett. B 501 (2001) 28 [hep-ph/0010096]

    ADS  Google Scholar 

  16. D. Dudal, K. van Acoleyen and H. Verscheide, in this Proceedings [hep-th/0204216].

    Google Scholar 

  17. K. Amemiya and H. Suganuma, Phys. Rev. D 60 (1999) 114509 [hep-lat/9811035]; Nucl. Phys. Proc. Suppl. 83 (2000) 419 [hep-lat/9909096].

    ADS  Google Scholar 

  18. K. Langfeld and A. Schäfke, Phys. Lett. B 493 (2000) 350 [hep-lat/0008023].

    ADS  Google Scholar 

  19. C. Morningstar and M. Peardon, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004]; A. Vaccarino and D. Weingarten, Phys. Rev. D 60 (1999) 114501 [hep-lat/9910007].

    ADS  Google Scholar 

  20. K. Kondo, Phys. Rev. D 57 (1998) 7467 [hep-th/9709109]; K. Kondo and T. Shinohara, Prog. Theor. Phys. 105 (2001) 649 [hep-th/0005125]; T. Shinohara, T. Imai and K. Kondo, hep-th/0105268.

    ADS  Google Scholar 

  21. M. Quandt and H. Reinhardt, Int. J. Mod. Phys. A 13 (1998) 4049 [hep-th/9707185].

    MathSciNet  ADS  Google Scholar 

  22. S. Weinberg, Phys. Lett. B 91 (1980) 51.

    ADS  Google Scholar 

  23. G. B. West, Phys. Lett. B 115 (1982) 468.

    ADS  Google Scholar 

  24. U. Ellwanger and N. Wschebor, Phys. Lett. B 517 (2001) 462 [hep-th/0107093]; JHEP 0110 (2001) 023 [hep-th/0107196].

    ADS  Google Scholar 

  25. J. Polonyi, “Confinement and renormalization”, hep-ph/9511243; “Confinement as crossover”, hep-ph/0012265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Freire, F. (2002). SU(2) Abelian Projected Action for Renormalisation Group Flows. In: Greensite, J., Olejník, Š. (eds) Confinement, Topology, and Other Non-Perturbative Aspects of QCD. NATO Science Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0502-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0502-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0874-0

  • Online ISBN: 978-94-010-0502-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics