Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 85))

  • 557 Accesses

Abstract

In many practical applications the reason for controlling the vibration of a structure is to reduce its radiated sound. In a previous chapter we saw that sound could be controlled using acoustic actuators such as loudspeakers, and in this chapter we will discuss how vibration actuators, acting directly on the structure, can be used to reduce its sound radiation. This may be termed active structural acoustic control [1] or active vibroacoustic control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuller C.F., Elliott S.J. and Nelson P.A. (1996) Active Control of Vibration, Academic Press.

    Google Scholar 

  2. Elliott S.J. (2001) Signal Processing for Active Control, Academic Press.

    Google Scholar 

  3. Wallace C.E. (1972) Radiation resistance of a rectangular panel. Journal of the Acoustical Society of America, 51, 946–952.

    Article  Google Scholar 

  4. Lee C.K. and Moon F.C. (1990) Modal sensors/actuators. American Society of Mechanical Engineers Journal of Applied Mechanics, 57, 434–441.

    Article  Google Scholar 

  5. Borgiotti G.V. (1990) The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements. Journal of the Acoustical Society of America, 88, 1884–1893.

    Article  Google Scholar 

  6. Photiadis D.M. (1990) The relationship of singular value decomposition to wavevector filtering in sound radiation problems. Journal of the Acoustical Society of America, 88, 1152–1159.

    Article  MathSciNet  Google Scholar 

  7. Cunefare K.A. (1991) The minimum multimodal radiation efficiency of baffled finite beams. Journal of the Acoustical Society of America, 90, 2521–2529.

    Article  Google Scholar 

  8. Baumann W.T., Saunders W.R and Robertshaw H.H. (1991) Active suppression of acoustic radiation from impulsively excited structures. Journal of the Acoustical Society of America, 88, 3202–3208.

    Article  Google Scholar 

  9. Elliott S.J. and Johnson M.E. (1993) Radiation modes and the active control of sound power. Journal of the Acoustical Society of America, 94, 2194–2204.

    Article  Google Scholar 

  10. Rex J. and Elliott S.J. (1992) The QWSIS-a new sensor for structural radiation control. Proceedings of the International Conference on Motion and Vibration Control (MOVIC), Yokohama, 339–343.

    Google Scholar 

  11. Guigou C. and Berry A. (1993) Design strategy for PVDF sensors in the active control of simply supported plates. Internal Report, GAUS, Dept. of Mechanical Engineering, Sherbrooke University.

    Google Scholar 

  12. Johnson M.E. and Elliott S.J. (1993) Volume velocity sensors for active control. Proceedings of the Institute of Acoustics, 15(3), 411–420.

    Google Scholar 

  13. Johnson M.E. and Elliott S.J. (1995) Active control of sound radiation using volume velocity cancellation. Journal of the Acoustical Society of America, 98, 2174–2186.

    Article  Google Scholar 

  14. Hansen C.H. and Snyder S.D. (1997) Active Control of Noise and Vibration, E&FN Spon.

    Google Scholar 

  15. Clark R.L. and Fuller C.R (1992) Experiments on the active control of structurally radiated sound using multiple piezoceramic actuators. Journal of the Acoustical Society of America, 91(6), 3313–3320.

    Article  Google Scholar 

  16. Fuller C.R (1991) Active control of sound transmission/radiation from elastic plates by vibration inputs: I. analysis. Journal of Sound and Vibration, 136(1), 1–15.

    Article  Google Scholar 

  17. Balas M.J. (1979) Direct velocity feedback control of large space structures. Journal Guidance Control, 2, 232–253.

    Google Scholar 

  18. Burke S.E., Hubbard J.E. and Meyer J.E. (1993) Distributed transducers and collocation. Journal of Mechanical System Signal Processing, 7(4), 349–361.

    Article  Google Scholar 

  19. Clark R.L. and Fuller C.R. (1992) Modal sensing of efficient acoustic radiators with polyvinylidene floride distributed sensors in active structural acoustic control approaches. Journal of the Acoustical Society of America, 91(6), 3321–3329.

    Article  Google Scholar 

  20. Clark R.L., Burdisso R.A. and Fuller C.R. (1993) Design approaches for shaping PVDF sensors in active structural acoustic control. Journal Intelligent Materials Systems/Structures, 4, 3541–365.

    Google Scholar 

  21. Carey D.M. and Stulen F.B. (1993) Experiments with a two-dimensional multimodal sensor. Proceedings of the International Conference on Recent Advances in Active Control of Sound and Vibration, Blacksburg, Virginia, USA, 41–52.

    Google Scholar 

  22. Gu Y., Clark R.L., Fuller C.R. and Zander A.C. (1994) Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidene floride (PVDF) modal sensors, ASME Journal of Vibration and Acoustics 116, 303–308.

    Article  Google Scholar 

  23. Charette F., Guigou C. and Berry A. (1995) Development of volume velocity sensors for plates using PVDF film, Proceedings of ACTIVE95, Newport Beach, California, USA, 241–252.

    Google Scholar 

  24. Clark R.L., Saunders W.R. and Gibbs G.P. (1998) Adaptive Structures, John Wiley & Sons, Inc., New York.

    Google Scholar 

  25. Lee C.K., (1990) Theory of laminated piezoelectric plates for the design of distributed sensor/actuators. Part I: governing equations and reciprocal relationships, Journal of the Acoustical Society of America, 87(3), 1144–1158.

    Article  Google Scholar 

  26. Gardonio P., Lee Y.-S., Elliott S.J. and Debost S. (2001) A panel with matched polyvinylidene fluoride volume velocity sensor and uniform force actuator for the active control of sound transmission. Proceedings of the Institution of Mechanical Engineers, 215, Part G, 187–206.

    Google Scholar 

  27. Gardonio P., Lee Y.-S., Elliott S.J. and Debost S. (2001) A panel with matched polyvinylidene fluoride volume velocity sensor and uniform force actuator for the active control of sound transmission. Journal of the Acoustical Society of America, 110(6), 3025–3031.

    Article  Google Scholar 

  28. Lee Y.S., Gardonio P. and Elliott S.J. (2001) Distributed four-layer PVDF sensor and actuator arrangement for the control of beam motion. Proceedings of SPIE’s 8 th Annual International Symposium on Smart Structures and Material, 284–294.

    Google Scholar 

  29. Cole D.G. and Clark R.L. (1994) Adaptive compensation of piezoelectric sensoriactuators, Journal of Intelligent Material Systems and Structures, 5, 665–672.

    Article  Google Scholar 

  30. Gibbs G.P., Clark R.L., Cox D.E. and Vipperman J.S (2000) Radiation modal expansion: application to active structural acoustic control. Journal of the Acoustical Society of America, 107(1), 332–339.

    Article  Google Scholar 

  31. Henrioulle K. and Sas P. (2001) A PVDF sensor/actuator pair for the active control of sound transmission. Proceedings of Internoise 2001, The Hague, The Netherlands, 284–294.

    Google Scholar 

  32. Lee Y.-S., Gardonio P. and Elliott S.J. (2002) Volume velocity vibration control of a smart panel using an arrangement of a quadratically shaped PVDF actuator and multiple accelerometers. Proceedings of the Institute of Acoustics Spring Conference 2002, Salford, UK

    Google Scholar 

  33. Francois A., De Man P. and Preumont A. (2001) Piezoelectic array sensing of volume displacement: a hardware demonstration of Sound and Vibration, 244(3), 395–405.

    Google Scholar 

  34. Meirovitch L. (1990) Dynamics and Control of Structures. John Wiley and Sons.

    Google Scholar 

  35. Preumont A. (1997) Vibration Control of Active Structures. Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  36. Sun J.Q. (1996) “Some observations on physical duality and collocation of structural control sensors and actuators”. Journal of Sound and Vibration, 194, 765–770.

    Article  Google Scholar 

  37. Elliott S.J., Gardonio P., Sors T.C. and Brennan M.J. (2001) Active vibro-acoustic control with multiple feedback loops, Journal of the Acoustical Society of America, 111(2), 908–915.

    Article  Google Scholar 

  38. Joshi S.M. (1989) Control of Large Flexible Space Structures. Springer Verlag.

    Book  MATH  Google Scholar 

  39. Bianchi E., Gardonio P. and Elliott S.J. (2002) Smart panel with decentralised units for the control of sound transmission. Part III Control system implementation, Proceedings of ACTIVE 2002, 499–510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Elliott, S.J., Gardonio, P. (2002). Active Vibroacoustic Control. In: Preumont, A. (eds) Responsive Systems for Active Vibration Control. NATO Science Series, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0483-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0483-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0898-6

  • Online ISBN: 978-94-010-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics