Skip to main content

Active Vibration Control of a Car Body Based on Experimentally Evaluated Modal Parameters

  • Chapter
  • 556 Accesses

Part of the book series: NATO Science Series ((NAII,volume 85))

Abstract

Active vibration control has been successfully tested for structures with simple geometry, such as beams and plates, by using modal controllers. Since the dynamical behaviour of a variety of mechanical structures can be expressed in terms of modal parameters, the application of modal control concepts can be extended to structures with more complex geometries. For such structures the evaluation of modal parameters from numerical calculations of local modes is complicated because the results strongly depend on proper boundary conditions of the truncated structure. Therefore the modal data are identified by an experimental modal analysis. The transformation of the experimentally evaluated mode shapes into a closed analytical formulation and the extraction of modal input and output factors for sensors and actuators connect experimental modal analysis and modal control theory. The implementation of the input and output factors into a modal state space formulation results in a modal filter for the point sensor array and a retransformation filter for the segmented actuator patches. In this study PVDF foil is used for sensors and actuators. The modal controller is implemented on a digital controller board and experimental tests with the floor panel and center panel of a car body are carried out to validate the proposed concept.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ωr :

natural frequency of the r th mode

ζr :

viscous damping ratio of the r th mode

φr :

mass normalized mode shape of the r th mode

q r :

modal coordinate of the r th mode

x, y :

cartesian coordinates

F :

mechanical load

f r :

modal mechanical load of the r th mode

{u} u :

input vector, actuator voltage

[A]:

modal system matrix

[B], b r :

modal input matrix, modal input factor

[C], C r :

modal output matrix, modal output factor

[G]:

gain matrix

{x}:

state variable vector

{y}:

sensor output vector

{R}:

control vector

Ĝ FF , Ĝ XX :

auto power spectrum

Ĝ FX :

cross power spectrum

γ2 :

coherence

References

  1. Beards, C.: 1995, Engineering Vibration Analysis with Application to Control Systems. Edward Arnold.

    Google Scholar 

  2. Callahan, J. and H. Baruh: 1995, ‘Active Control of Flexible Structures Using Segmented Piezoelectric Actuators’. In: Smart Structures and Materials, Vol. 2443. pp. 630–642.

    Google Scholar 

  3. Clark, R., W. Saunders, and G. Gibbs: 1998, Adaptive Structures. Wiley Interscience.

    Google Scholar 

  4. Ewings, D.: 1984, Modal Testing: Theory and Practice. Research Studies Press LTD.

    Google Scholar 

  5. Ewins, D. and J. Sidhu: 1982, ‘Modal Testing and the Linearity of Structures’. Mecanique Materiaux Electricite (389-390-391), 297–302.

    Google Scholar 

  6. Fuller, C., S. Elliott, and P. Nelson: 1996, Active Control of Vibration. London: Academic Press.

    Google Scholar 

  7. Gaul, L. and U. Stbener: 1999, ‘Active Control of Structures’. In: J. Montalvão e Silva and N. Maia (eds.): Modal Analysis & Testing, Vol. 363 of NATO SCIENCE SERIES: E Applied Sciences. pp. 565–604.

    Google Scholar 

  8. Gawronski, W.: 1998, Dynamics and Control of Structures. Springer New York, Inc.

    MATH  Google Scholar 

  9. Gould, L. and M. Murray-Lasso: 1966, ‘On the Modal Control of Distributed Parameter Systems with Distributed Feedback’. In: Transactions on Automatic Control, Vol. 11. p. 79.

    Article  Google Scholar 

  10. Heylen, W., S. Lammens, and P. Sas: 1997, Modal Analysis Theory and Testing. Katholieke Universiteit Leuven.

    Google Scholar 

  11. Hornung, T., H. Reimerdes, and J. Günnewig: 1998, ‘Modal Analysis, Modelling and Control of Vibration Systems with Integrated Active Elements’. In: U. Gabbert (ed.): Smart Mechanical Systems-Adaptronics. pp. 163–176.

    Google Scholar 

  12. Lammering, R., J. Jia, and C. Rogers: 1994, ‘Optimal Placement of Piezoelectric Actuators in Adaptive Truss Structures’. Journal of Sound and Vibration pp. 67–85.

    Google Scholar 

  13. Mackiewicz, A., J. Holnicki-Szulc, and F. Lopez-Almansa: 1996, ‘Optimal Sensor Location in Active Control of Flexible Structures’. AIAA Journal 34(4), 857–859.

    Article  Google Scholar 

  14. Meirowitch, L.: 1990, Dynamics and Control of Structures. John Wiley.

    Google Scholar 

  15. Natke, H.: 1992, Einführung in Theone und Praxis der Zeitreihen-und Modalanalyse. Wiesbaden: Vieweg Verlag.

    Google Scholar 

  16. Porter, B. and T. Crossley: 1972, Modal Control Theory and Applications. Taylor and Francis.

    MATH  Google Scholar 

  17. Preumont, A.: 1997, Vibration Control of Active Structures. Kluwer Academic Publisher.

    Book  MATH  Google Scholar 

  18. Reynier, M. (ed.): 1998, ‘Optimized Experimental Strategy for Updating Problems: The Sensor Placement’. NATO ADVANCED STUDY INSTITUTE.

    Google Scholar 

  19. Sivrioglu, S., Y. Kikushima, and N. Tanaka: 1999, ‘An H∞ Control Design Approach for Distributed Parameter Structures with Attached PVDF Sensors’. In: Sixth International Congress on Sound and Vibration. pp. 1669–1676.

    Google Scholar 

  20. Stbener, U. and L. Gaul: 1999, ‘Active Control of Plate Vibration by Discrete PVDF Actuator and Sensor Segments’. In: N. Hagood and M. Atalla (eds.): Ninth International Conference on Adaptive Structures and Technologies. Cambridge, USA, pp. 349–358.

    Google Scholar 

  21. Stbener, U. and L. Gaul: 2000, ‘Active Vibration and Noise Control for the Interiour of a Car Body by PVDF Actuator and Sensor Segments’. In: R. Ohayon and M. Bernadou (eds.): 10th International Conference on Adaptive Structures and Technologies. Paris, France, pp. 457–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stöbener, U., Gaul, L. (2002). Active Vibration Control of a Car Body Based on Experimentally Evaluated Modal Parameters. In: Preumont, A. (eds) Responsive Systems for Active Vibration Control. NATO Science Series, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0483-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0483-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0898-6

  • Online ISBN: 978-94-010-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics