Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 14))

Abstract

Engineers and scientists are faced with the problem of the behavior and fate of contaminants during the infiltration of river waters to groundwater. Sontheimer [1], e.g., found that induced bank filtration resulted in the elimination of some of the contaminants and could thus be considered as the first treatment step for the production of drinking water from river water. If rivers that naturally lose water to aquifers are contaminated, e.g., from outlets of sewage treatment plants, then the groundwater may become contaminated, too (e.g., Schwarzenbach et al. [2]). The quality of the water, which is freshly infiltrated from the river, revealed to be strongly dependent on the residence time and the mixing rate of river water and deeper groundwater. In a few infiltration systems, some contaminant compounds could partly be eliminated from the aquatic environment, and the quality of river water has somewhat improved (e.g., von Gunten and Lienert [3]). Today’s concerns are broader than looking at the water quality. The state of the groundwater/surface water ecosystem and its evolution in the future is of interest. In many floodplains, the state of riverbeds and banks is far from being natural (e.g., Brunke and Gonser [4]; Bencala [5]). Various forms of land use, such as hydropower generation, flood prevention, or the need of arable land, require a safe and defined bank line and a channeled riverbed. These requirements are in conflict with the needs of the vegetation and animals at the bank and in the bed of rivers (riparian zone).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sontheimer, H. (1980) Experience with riverbank filtration along the Rhine River, J. Amer. Wat. Works Assoc. 72: 386–390.

    CAS  Google Scholar 

  2. Schwarzenbach, R.P., Giger, W., Hoehn, E., and Schneider, J. (1983) Behavior of organic compounds during infiltration of river water to groundwater: Field studies, Environ. Sci. Technol. 17(8): 472–479.

    Article  CAS  Google Scholar 

  3. von Gunten, H.R., and Lienert, Ch. (1993), Decreased metal concentrations in ground water caused by controls of phosphate emissions, Nature 364: 220–222.

    Article  Google Scholar 

  4. Brunke, M., and Gonser, T. (1997) The ecological significance of exchange processes between rivers and groundwater, Freshwater Biol. 37: 1–33.

    Article  Google Scholar 

  5. Bencala, K.E. (1993) A perspective on stream-catchment connections, J. N. Am. Benthol. Soc. 12(1): 44–47.

    Article  Google Scholar 

  6. Tolson, J.S., and Doyle, F.L., eds. (1977) Karst Hydrogeology, Mem. Int. Assoc. Hydrogeol., vol. XII, UAH Press, Univ. of Alabama, Huntsville, Ala., U.S.A.

    Google Scholar 

  7. Huggenberger, P., Hoehn, E., Beschta, R., and Woessner, W.W. (1998) Groundwater control on riparian/fluvial systems, in Riparian Groundwater Ecology, edited by J. J. Ward, J. Stanford, and T. Gonser. Freshwater Biol. 40: 407–425.

    Article  Google Scholar 

  8. Anderson, M.P. (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments, Geol. Soc. Am. Bull. 101: 501–511.

    Article  Google Scholar 

  9. Webb, E.K. (1994) Simulating the three-dimensional distributions of sediment units in braided-stream deposits, J. Sediment. Res. 64: 219–231.

    Google Scholar 

  10. Bear, J. (1972) Dynamics of Fluids in Porous Media, Elsevier, New York.

    Google Scholar 

  11. Jäckli, H. (1974) Grundwasser und Oberflächengewässer in ihren gegenseitigen Beziehungen (Exchange of groundwaters and surface waters), Jber. u. Mitt. oberrhein. Geol. Ver. 56: 125–143.

    Google Scholar 

  12. Woessner, W.W. (1992) Stream and fluvial plain ground water interactions: Rescaling hydrogeological thought, Ground Water 38(3): 423–429.

    Article  Google Scholar 

  13. Jancarkova, I., Larsen, T.A. and Gujer, W. (1997) Distribution of nitrifying bacteria in a shallow stream, Water Sci. Technol. 36(8-9): 161–166.

    Article  CAS  Google Scholar 

  14. Hoehn, E., and von Gunten, H.R. (1989) Radon in Groundwater: A tool to assess infiltration from surface waters to aquifers, Water Resour. Res. 25(8): 1795–1803.

    Article  CAS  Google Scholar 

  15. Stanford, J.A., Ward, J.V., and Ellis, B.K. (1994) Ecology of the alluvial aquifers of the Flathead River, Montana, in Groundwater Ecology, edited by J. Gibert, D.L. Danielopol, and J.A. Stanford, Academic Press.

    Google Scholar 

  16. Constantz, J., Thomas, C.L., and Zellweger, G.W. (1994) Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge, Water Resour. Res. 30: 3253–3264.

    Article  Google Scholar 

  17. Hamada, H., and Komae, T. (1998) Analysis of recharge by paddy field irrigation using Rn-222 concentration in groundwater as an indicator, J. Hydrol. 105(1-2): 92–100.

    Article  Google Scholar 

  18. Hoehn, E., and Kiefer, B. (1992) Ausbau der Wasserkräfte im oberen Puschlav; Untersuchungen zur Umweltverträglichkeit: Projektorganisation und hydrogeologische Ergebnisse (Hydropower exploration in the upper Poschiavo Valley, Grisons, Switzerland: Project organization and results of hydrogeological investigations). Mitt. Schweiz. Ges. f. Boden- und Felsmechanik 125: 35–42.

    Google Scholar 

  19. Hoehn, E., Gonser, T., Hohmann, D., and Stierli, R. (2001) Erkennen von Grundwasser-Lebensräumen in Auengebieten mit Radon als Tracer, EAWAG-News 52D: 18–19.

    Google Scholar 

  20. Hoehn, E., and Santschi, P.H. (1987) Interpretation of tracer displacement during infiltration of river water to groundwater, Water Resour. Res. 23(4): 633–640.

    Article  CAS  Google Scholar 

  21. Hoehn, E. (1979) Hydrogeologische Untersuchungen im Gebiet westlich von Frick (Aargauer Tafeljura), Beitr. z. Geol. Schweiz - Hydrol. 26.

    Google Scholar 

  22. Muchenberger, F. (1979) Abflussmessungen in Oberflächengewässern für Grundwasserbilanzierungen, Gas-Wasser-Abwasser 59(9): 401–407.

    Google Scholar 

  23. Harvey, J.W., Wagner, B.J., and Bencala, K.E. (1996) Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange, Water Re sour. Res. 32(8): 2441–2451.

    Article  Google Scholar 

  24. Bertin, C., and Bourg, A.C.M. (1992) Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing, Environ. Sci. Technol. 28(5): 794–798.

    Article  Google Scholar 

  25. Schälchli, U. (1993) Die Kolmation von Fliessgewässersohlen: Prozesse und Berechnungsgrundlagen (Clogging of River Beds: Processes and Theory), Ph.D. thesis, ETH Diss. Nr. 10293, Swiss Fed. Inst. of Technol., Zurich, Switzerland.

    Google Scholar 

  26. Huggenberger, P. (1993) Radar facies. Recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, Switzerland, in Braided Rivers: Form, Process and Economic Application, edited by J.L. Best and C.S. Bristow, Geol. Soc. Spec. Publ. 75.

    Google Scholar 

  27. Mattle, N., Kinzelbach, W., Beyerle, U., Huggenberger, P., and Loosli, H.H. (2001) Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model, J. Hydrol. 242: 183–196.

    Article  CAS  Google Scholar 

  28. Fry, V.A., Istok, J.D., Semprini, L., O’Reilly, K.T., and Buschek, T.E. (1995) Retardation of dissolved oxygen due to a trapped gas phase in porous media, Ground Water 33(3): 391–398.

    Article  CAS  Google Scholar 

  29. Olschewski, A., Fischer, U., Hofer, M., and Schulin, (R. 1995) Sulfur hexafluoride as a gas tracer in soil venting operations, Environ. Sci. Technol. 29(1): 264–266.

    Article  CAS  Google Scholar 

  30. Levenspiel, O. (1999) Chemical Reactor Engineering (third edition), John Wiley & Sons, New York, U.S.A.

    Google Scholar 

  31. Roberts, P.V., McCarty, P.L., and Roman, W.M. (1978) Direct injection of reclaimed water into an aquifer, J. Environ. Eng. Div. EE5: 933–949.

    Google Scholar 

  32. Schlosser, P., Stute, M., Sonntag, C., and Münnich, K.O. (1989) Tritiogenic 3He in shallow ground water, Earth Planet. Sci. Lett. 94: 245–256.

    Article  CAS  Google Scholar 

  33. Beyerle, U., Aeschbach-Hertig, W., Hofer, M., Imboden, D.M., Baur, H., and Kipfer, R. (1999) Infiltration of river water to a shallow aquifer investigated with 3H/3He, noble gases and CFCs, J. Hydrol. 220: 169–185.

    Article  CAS  Google Scholar 

  34. Brunke, M., and Gonser, T. (1999) Hyporheic invertebrates - the clinal nature of interstitial communities structured by hydrological exchange and environmental gradients, J. N. Am. Benthol. Soc. 18(3): 344–362.

    Article  Google Scholar 

  35. de Marsily, Gh. (1986) Quantitative Hydrogeology, Academic Press, Orlando, Florida, U.S.A.

    Google Scholar 

  36. Bonnard, E., Karagounis, I., Kempf, Th., and Walter, U. (1991) Abkühlung des Grundwassers durch Wärmenutzung, Gas-Wasser-Abwasser 71(1-3): 5–36.

    CAS  Google Scholar 

  37. McKnight, D.M., and Bencala, K.E. (1988) Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, U.S.A., Arctic & Alpine Res. 20(4): 492–500.

    Article  Google Scholar 

  38. Bencala, K.E., Jackman, A.P., Kennedy, V.C., Avanzino, R.J., and Zellweger, G.W. (1983) Kinetic analysis of strontium and potassium sorption onto sands and gravels in a natural channel, Water Resour. Res. 19(3): 725–731.

    Article  CAS  Google Scholar 

  39. Bencala, K.E., Duff, J.H., Harvey, J.W., Jackman, A.P., and Triska, F.J. (1993) Modelling within the stream-catchment continuum, in Modelling Change in Environmental Systems, edited by A.J. Jakeman et al., 164–187, John Wiley & Sons, Chichester, West Sussex, England.

    Google Scholar 

  40. Zobrist, J., Davis, J.S., and Hegi, H.R. (1976) Charakterisierung des chemischen Zustandes des Flusses Glatt, Gas-Wasser-Abwasser 784: 1–20.

    Google Scholar 

  41. Freimoser, M., and Locher, Th. (1980) Gedanken zur pleistozänen Landschaftsgeschichte im nördlichen Teil des Kantons Zürich aufgrund hydrogeologischer Untersuchungen, Eclogae Geol. Helv. 73(1): 251–270.

    Google Scholar 

  42. Giger, W., Schwarzenbach, R.P., Hoehn, E., Schellenberg, K., Schneider, J.K., Wasmer, H.R., Westall, J., and Zobrist, J. (1983) Das Verhalten organischer Wasserinhaltsstoffe bei der Grundwasserbildung und im Grundwasser, Gas-Wasser-Abwasser 63(9): 517–532.

    CAS  Google Scholar 

  43. Hoehn, E., Schwarzenbach, R., and Zobrist, J. (1983) Infiltration von Flusswasser ins Grundwasser -hydrogeologische und hydrochemische Untersuchungen im Glattal, Gas-Wasser-Abwasser 63(8): 401–410.

    CAS  Google Scholar 

  44. Gujer, W., Krejci, V., Schwarzenbach, R., and Zobrist, J. (1982) Von der Kanalisation ins Grundwasser - Charakterisierung eines Regenereignisses im Glattal, Gas-Wasser-Abwasser 62(7): 298–311.

    CAS  Google Scholar 

  45. Drost, W., and Hoehn, E. (1989) Macrodispersivity in granular aquifers determined with single-well techniques using Br-82 as a tracer, Radiochim. Acta 47: 13–20.

    CAS  Google Scholar 

  46. Santschi, P.H., Hoehn, E., Lück, A., and Farrenkothen, K. (1987) Tritium as a tracer for the movement of surface water and groundwater in the Glatt valley, Switzerland, Environ. Sci. Technol. 21(9): 909–916.

    Article  CAS  Google Scholar 

  47. Schwarzenbach, R.P., and Westall, J. (1981) Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies, Environ. Sci. Technol. 15(11): 1060–1067.

    Article  Google Scholar 

  48. Kuhn, E., Colberg, P.J., Schnoor, J.L., Wanner, O., Zehnder, A.J.B., and Schwarzenbach, R.P. (1985) Microbial transformations of substituted benzenes during infiltration of river water to groundwater: Laboratory column studies, Environ. Sci. Technol. 19(10): 961–968.

    Article  CAS  Google Scholar 

  49. Kuhn, E., van Loosdrecht, M., Giger, W., and Schwarzenbach, R.P. (1987) Microbial degradation of nitrilotriacetate (NTA) during river water /groundwater infiltration: Laboratory column studies, Water Res. 21(10): 1237–1248.

    Article  CAS  Google Scholar 

  50. Ahel, M., Schaffner, Ch., and Giger, W. (1996) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment - III. Occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater, Water Res. 30(1): 37–46.

    Article  CAS  Google Scholar 

  51. McFeters, G.A., Egli, T., Wilberg, E., Alder, A., Schneider, R., Snozzi, M., and Giger, W. (1990) Activity and adaptation of nitriloacetate (NTA)-degrading bacteria: Field and laboratory studies, Water Res. 24(7): 875–881.

    Article  CAS  Google Scholar 

  52. Jacobs, L.A., von Gunten, H.R., Keil, R., Kuslys, and M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland, Geochim. Cosmochim. Acta 5 2: 2693–2706.

    Article  Google Scholar 

  53. von Gunten, H.R., Karametaxas, G., Krähenbühl, U., Kuslys, M., Giovanoli, R., Hoehn, E., and Keil, R. (1991) Seasonal biogeochemical cycles in riverborne groundwater, Geochim. Cosmochim. Acta 55: 3597–3609.

    Article  Google Scholar 

  54. von Gunten, H.R., Karametaxas, G., Keil, and R. (1994) Chemical processes in infiltrated riverbed sediments, Environ. Sci. Technol. 28(12): 2087–2093.

    Article  Google Scholar 

  55. von Gunten, H.R., and Kull, Th. (1986) Infiltration of inorganic compounds from the Glatt river, Switzerland, into a groundwater aquifer, Water, Air and Soil Pollution 29: 333–346.

    Article  Google Scholar 

  56. Lienert, Ch., Short, St. A., and von Gunten, H.R. (1994) Uranium infiltration from a river to shallow groundwater, Geochim. Cosmochim. Acta 58(24): 5455–5463.

    Article  CAS  Google Scholar 

  57. Matsunaga, T., Karametaxas, G., von Gunten, H.R., and Lichtner, P.C. (1993) Redox chemistry of iron and manganese minerals in river-recharged aquifers: A model interpretation of a column experiment, Geochim. Cosmochim. Acta 57: 1691–1704.

    Article  CAS  Google Scholar 

  58. von Gunten, U., and Zobrist, U. (1993) Biogeochemical changes in groundwater-infiltration systems: Column studies, Geochim. Cosmochim. Acta 57: 3895–3906.

    Article  Google Scholar 

  59. Hoehn, E., and von Gunten, H.R. (1985) Distribution of metal pollution in groundwater determined from sump sludges in wells, Water Sci. Technol. 17: 115–132.

    CAS  Google Scholar 

  60. Nowack, B., Xue, H., and Sigg, L. (1997) Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater, Environ. Sci. Technol. 31(3): 866–872.

    Article  CAS  Google Scholar 

  61. Rosta, L., and von Gunten, H.R. (1990) Light scattering characterization of laponite sols, J. Colloid Interface Sci. 134(2): 397–405.

    Article  CAS  Google Scholar 

  62. Waber, U., von Gunten, H.R., and Krähenbühl, U. (1987) The impact of the Chernobyl accident on a river/groundwater aquifer, Radiochim. Acta 41: 191–198.

    CAS  Google Scholar 

  63. von Gunten, H.R., Waber, U.E., and Krähenbühl, U. (1988) The reactor accident at Chernobyl: A possibility to test colloid-controlled transport of radionuclides in a shallow aquifer, J. Contam. Hydrol. 2: 237–247.

    Article  Google Scholar 

  64. Waber, U.E., Lienert, Ch., and von Gunten, H.R. (1990) Colloid-related infiltration of trace metals from a river to shallow groundwater, J. Contain. Hydrol. 6: 251–265.

    Article  CAS  Google Scholar 

  65. Hoehn, E., and Hofer, M. (submitted paper) Rn-222 as a tracer for the study of the exchange of river water and ground water during rehabilitation operations in a perialpine floodplain, River Töss, Northern Switzerland. Submitted to J. Hydrol.

    Google Scholar 

  66. Vassolo, S., Kinzelbach, W., and Schäfer, W. (1997) Determination of a well head protection zone by stochastic inverse modeling, J. Hydrol. 206(3-4): 268–280.

    Article  Google Scholar 

  67. Hoehn, E. (1997) Linsental Valley, N Switzerland, a resource of drinking water and a natural environment, EAWAG-News 46E: 26–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoehn, E. (2002). Hydrogeological Issues of Riverbank Filtration — A Review. In: Ray, C. (eds) Riverbank Filtration: Understanding Contaminant Biogeochemistry and Pathogen Removal. NATO Science Series, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0479-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0479-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0955-6

  • Online ISBN: 978-94-010-0479-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics