Skip to main content

Three-Dimensional Cryogenic Filters

  • Chapter
Microwave Superconductivity

Part of the book series: NATO Science Series ((NSSE,volume 375))

  • 895 Accesses

Abstract

Microwave filter networks represent a critical and substantive portion of any communication systems. Such a system, be it wireless or satellite, requires filters to group the signals received into channels for amplification and processing. The phenomenal growth in telecommunication industry in recent years has brought significant advances in filter technology as new communication systems emerged demanding equipment miniaturization while requiring more stringent filter characteristics. In particular, the growth of satellite communication industry has spurred tremendous activity in the area of microwave filter design and has been responsible for many advances made in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Collin R. E. (1966) Foundations for microwave engineering, McGraw-Hill, New York.

    Google Scholar 

  2. Kajfez and Guilon P. (1986) Dielectric resonators, Artech House Inc. MA.

    Google Scholar 

  3. Atia A. E and Williams A. E. (1972) Narrow bandpass waveguide filters, IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 238–265.

    Google Scholar 

  4. Cameron, R.J. (1980) General prototype network synthesis methods for microwave filters”, ESA Journal, vol,6 pp. 1018–1028.

    Google Scholar 

  5. Atia A. E. and Williams A. E. (1971) New types of waveguide bandpass filters for satellite transponders, Comsat Technical Review, Vol 1, No 1, pp. 21–43.

    Google Scholar 

  6. Cohn S. B. (1957) Direct coupled resonators filters, Proc. IRE, vol,45 pp. 187–197.

    Article  Google Scholar 

  7. Matthaei G. L., Young L. and Jones E. M. T. (1980) Microwave filters impedance matching networks and coupling structures, Artech House, MA.

    Google Scholar 

  8. Vahldieck R., Bornomenn and Arndt F. (1983), Optimized wave guide E-plane metal insert filters for millimeter wave applications, IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 65–69.

    Article  Google Scholar 

  9. Regan G. L. (1948) Microwave Transmission Circuits (MIT Radiation Laboratory Series, Vol 9, McGraw-Hill, New York, pp. 673–677.

    Google Scholar 

  10. Lin W. ( 1951) Microwave filters employing a single cavity excited in more than one mode, Journal of Applied Physics, Vol. 22, No.8, pp. 989–1001.

    Article  MATH  Google Scholar 

  11. Currie M. R. (1948) The utilization of degenerate modes in a spherical cavity, Journal of Applied Physics, Vol 24, No.8, pp. 998–1003.

    Article  Google Scholar 

  12. Williams A. E. (1970) A four-cavity Elliptic waveguide filter, IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 1109–1114.

    Article  Google Scholar 

  13. Atia A. E. and Williams A. E. (1971) New types of waveguide bandpass filters for satellite transponders, COMSAT technical Review, Vol 1, No 1, pp. 21–43.

    Google Scholar 

  14. Cohn S. B. and Targow E. N (1965) Investigation of microwave dielectric resonator filters, Rantec Div., Emerson Electric Co.., Internal report.

    Google Scholar 

  15. Cohn S. B (1967) Microwave bandpass filters containing high Q dielectric resonators, IEEE Trans. Microwave Theory and Tech. Vol, MTT-16, pp. 218–227.

    Google Scholar 

  16. Harrison W. H. (1967) Miniature high-Q bandpass filter employing dielectric resonators, IEEE Trans. Microwave Theory and Tech. Vol. MTT-16, pp. 210–218.

    Google Scholar 

  17. Wakino K. et al. (1975), Microwave bandpass filters containing dielectric resonators with improved temperature stability and spurious response, IEEE MTT Symposium Dig. pp. 63–65.

    Google Scholar 

  18. Fiedziuszko S. J. (1982), Dual mode dielectric resonator loaded cavity filter, IEEE Trans. Microwave Theory and Tech. Vol. MTT-30 pp. 1311–1316.

    Article  Google Scholar 

  19. Kudsia C., Cameron R. and Tang W. C. (1992) Innovations in microwave filters and multiplexing networks for communications satellite systems, IEEE Trans. Microwave Theory and Tech. Vol. MTT-40 pp. 1133–1149.

    Article  Google Scholar 

  20. Zaki K. A. and C. Chen (1986) New results in dielectric loaded resonators, IEEE Trans. Microwave Theory Tech. vol. MTT-34 pp. 815–824.

    Article  Google Scholar 

  21. Klein N. et al. (1999) High-Q dielectric resonator devices at cryogenic temperatures, IEEE Transactions on Applied Superconductivity, Vol. 9, No.2 pp. 3573–3576.

    Article  Google Scholar 

  22. Klein, N., Scholen, A., Tellmann N., Zuccaro, C. and Urban, K.W (1996) Properties and applications of HTS-shielded dielectric resonators: a state-of-the-art report, IEEE Transactions on Microwave Theory and Techniques, Vol. 44, pp. 1369–1373.

    Article  Google Scholar 

  23. Krupka J. et al (1994) Dielectric properties of single crystals of Al2O3, LaAliO3, NdCuO3, SrTiO3 and MgO at cryogenic temperatures, IEEE Transactions on Microwave Theory and Techniques, Vol. 42 pp. 1890–1890.

    Google Scholar 

  24. Penn S. and Alford N. High dielectric constant, low loss dielectric resonator materials, EPSRC Final report GRlK70649, EEIE, South Bank University, London, UK.

    Google Scholar 

  25. Mansour R. R., Dokas V., Thomson G., Tang W. C. and Kudsia C. (1994) A C-band superconductive input multiplexer for communication satellites”, IEEE Trans. Microwave Theory Tech. vol. MTT-42 pp. 2472–2478.

    Article  Google Scholar 

  26. Mansour R. R and Dokas V. (1996) US Patent 5,498,771, Miniaturized dielectric resonator filters and method of operation thereof at cryogenic temperatures.

    Google Scholar 

  27. Mansour R. R., Jolley B., Ye S. Thomson, F. S. and Dokas V (1996) On the power handling capability of high temperature superconductive filters”, IEEE Trans., Microwave Theory and Tech., Vol. MTT-44, pp. 1322–1338.

    Article  Google Scholar 

  28. Alford N. M et al. (1991) Low surface resistance in YBCO melt-processed thick films, Nature, Vol. 349, p.680.

    Article  MathSciNet  Google Scholar 

  29. Button T. W. et al (1991), The processing and properties of high Tc thick films, IEEE Trans. Magnetics, vol.27, pp. 1434–1437.

    Article  Google Scholar 

  30. Button T. W. and Alford N. M. (1992) High Q YBCO cavities, Applied Phys. Lett vol.60., pp. 1378–1380.

    Article  Google Scholar 

  31. Button T. W. et al. (1996) Properties and applications of thick film high temperature superconductors, IEEE Trans. Microwave Theory and Tech Vol, MIT-44, pp. 1356–1360.

    Article  Google Scholar 

  32. Lithgow R. D. and Peters J. M. (1997), Electromagnetic resonant filter comprising cylindrically curved split ring resonators, US Patent 6,616,540A.

    Google Scholar 

  33. Lithgow R. D., Koh E., Lines M. E. and Peterson E (1997) Electromagnetic resonator comprised of annular resonant bodies disposed between confinement plates, US patent 5,629,266A.

    Google Scholar 

  34. Dick G. J. at al. ( 1976) The superconducting split ring resonator as an accelerating structure, Nuclear Instruments and Methods, vol. 138, No.2, pp. 24–26.

    Article  Google Scholar 

  35. Hardy W. N. et al. (1981) Split-ring resonator for use in magnetic resonance from 200–2000 MHz. Rev Sci, Instrument, Vol. 52 (2), p.213.

    Article  Google Scholar 

  36. Mehdizadeh M. et al, (1983) Loop gap resonator — a lumped microwave resonant structure, IEEE Trans. Microwave Theory and Tech. Vol. MIT-31, pp. 1059–1063.

    Article  Google Scholar 

  37. Atia A. E., Williams A. E. and R. W. Newcomb (1974) Narrow-band multiple-coupled cavity synthesis, IEEE Trans. on Circuits and Systems, pp. 649–655.

    Google Scholar 

  38. Ansoft HFSS software package, Pittsburgh, PA, USA.

    Google Scholar 

  39. Agilent HFSS Software package, Agilent Technologies, Palo-Alto, CA, USA.

    Google Scholar 

  40. Zaki K. A. and Chen C. (1990) A novel coupling method for dual mode waveguide or dielectric resonator filter IEEE Trans. Microwave Theory Tech. vol. MIT-38 pp. 1885–1893.

    Google Scholar 

  41. Shen Z. Y. (1994) High temperature superconducting microwave circuits, Artech House Inc. Norwood, MA 02062.

    Google Scholar 

  42. Nisenoff M. and Meyers W. J (2001) On-orbit status of the high temperature superconductivity experiment, IEEE Applied Supereonductivity Transactions. Vol 11. pp. 799–805.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mansour, R.R. (2001). Three-Dimensional Cryogenic Filters. In: Weinstock, H., Nisenoff, M. (eds) Microwave Superconductivity. NATO Science Series, vol 375. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0450-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0450-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0446-9

  • Online ISBN: 978-94-010-0450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics