Abstract
Microwave filter networks represent a critical and substantive portion of any communication systems. Such a system, be it wireless or satellite, requires filters to group the signals received into channels for amplification and processing. The phenomenal growth in telecommunication industry in recent years has brought significant advances in filter technology as new communication systems emerged demanding equipment miniaturization while requiring more stringent filter characteristics. In particular, the growth of satellite communication industry has spurred tremendous activity in the area of microwave filter design and has been responsible for many advances made in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Collin R. E. (1966) Foundations for microwave engineering, McGraw-Hill, New York.
Kajfez and Guilon P. (1986) Dielectric resonators, Artech House Inc. MA.
Atia A. E and Williams A. E. (1972) Narrow bandpass waveguide filters, IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 238–265.
Cameron, R.J. (1980) General prototype network synthesis methods for microwave filters”, ESA Journal, vol,6 pp. 1018–1028.
Atia A. E. and Williams A. E. (1971) New types of waveguide bandpass filters for satellite transponders, Comsat Technical Review, Vol 1, No 1, pp. 21–43.
Cohn S. B. (1957) Direct coupled resonators filters, Proc. IRE, vol,45 pp. 187–197.
Matthaei G. L., Young L. and Jones E. M. T. (1980) Microwave filters impedance matching networks and coupling structures, Artech House, MA.
Vahldieck R., Bornomenn and Arndt F. (1983), Optimized wave guide E-plane metal insert filters for millimeter wave applications, IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 65–69.
Regan G. L. (1948) Microwave Transmission Circuits (MIT Radiation Laboratory Series, Vol 9, McGraw-Hill, New York, pp. 673–677.
Lin W. ( 1951) Microwave filters employing a single cavity excited in more than one mode, Journal of Applied Physics, Vol. 22, No.8, pp. 989–1001.
Currie M. R. (1948) The utilization of degenerate modes in a spherical cavity, Journal of Applied Physics, Vol 24, No.8, pp. 998–1003.
Williams A. E. (1970) A four-cavity Elliptic waveguide filter, IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 1109–1114.
Atia A. E. and Williams A. E. (1971) New types of waveguide bandpass filters for satellite transponders, COMSAT technical Review, Vol 1, No 1, pp. 21–43.
Cohn S. B. and Targow E. N (1965) Investigation of microwave dielectric resonator filters, Rantec Div., Emerson Electric Co.., Internal report.
Cohn S. B (1967) Microwave bandpass filters containing high Q dielectric resonators, IEEE Trans. Microwave Theory and Tech. Vol, MTT-16, pp. 218–227.
Harrison W. H. (1967) Miniature high-Q bandpass filter employing dielectric resonators, IEEE Trans. Microwave Theory and Tech. Vol. MTT-16, pp. 210–218.
Wakino K. et al. (1975), Microwave bandpass filters containing dielectric resonators with improved temperature stability and spurious response, IEEE MTT Symposium Dig. pp. 63–65.
Fiedziuszko S. J. (1982), Dual mode dielectric resonator loaded cavity filter, IEEE Trans. Microwave Theory and Tech. Vol. MTT-30 pp. 1311–1316.
Kudsia C., Cameron R. and Tang W. C. (1992) Innovations in microwave filters and multiplexing networks for communications satellite systems, IEEE Trans. Microwave Theory and Tech. Vol. MTT-40 pp. 1133–1149.
Zaki K. A. and C. Chen (1986) New results in dielectric loaded resonators, IEEE Trans. Microwave Theory Tech. vol. MTT-34 pp. 815–824.
Klein N. et al. (1999) High-Q dielectric resonator devices at cryogenic temperatures, IEEE Transactions on Applied Superconductivity, Vol. 9, No.2 pp. 3573–3576.
Klein, N., Scholen, A., Tellmann N., Zuccaro, C. and Urban, K.W (1996) Properties and applications of HTS-shielded dielectric resonators: a state-of-the-art report, IEEE Transactions on Microwave Theory and Techniques, Vol. 44, pp. 1369–1373.
Krupka J. et al (1994) Dielectric properties of single crystals of Al2O3, LaAliO3, NdCuO3, SrTiO3 and MgO at cryogenic temperatures, IEEE Transactions on Microwave Theory and Techniques, Vol. 42 pp. 1890–1890.
Penn S. and Alford N. High dielectric constant, low loss dielectric resonator materials, EPSRC Final report GRlK70649, EEIE, South Bank University, London, UK.
Mansour R. R., Dokas V., Thomson G., Tang W. C. and Kudsia C. (1994) A C-band superconductive input multiplexer for communication satellites”, IEEE Trans. Microwave Theory Tech. vol. MTT-42 pp. 2472–2478.
Mansour R. R and Dokas V. (1996) US Patent 5,498,771, Miniaturized dielectric resonator filters and method of operation thereof at cryogenic temperatures.
Mansour R. R., Jolley B., Ye S. Thomson, F. S. and Dokas V (1996) On the power handling capability of high temperature superconductive filters”, IEEE Trans., Microwave Theory and Tech., Vol. MTT-44, pp. 1322–1338.
Alford N. M et al. (1991) Low surface resistance in YBCO melt-processed thick films, Nature, Vol. 349, p.680.
Button T. W. et al (1991), The processing and properties of high Tc thick films, IEEE Trans. Magnetics, vol.27, pp. 1434–1437.
Button T. W. and Alford N. M. (1992) High Q YBCO cavities, Applied Phys. Lett vol.60., pp. 1378–1380.
Button T. W. et al. (1996) Properties and applications of thick film high temperature superconductors, IEEE Trans. Microwave Theory and Tech Vol, MIT-44, pp. 1356–1360.
Lithgow R. D. and Peters J. M. (1997), Electromagnetic resonant filter comprising cylindrically curved split ring resonators, US Patent 6,616,540A.
Lithgow R. D., Koh E., Lines M. E. and Peterson E (1997) Electromagnetic resonator comprised of annular resonant bodies disposed between confinement plates, US patent 5,629,266A.
Dick G. J. at al. ( 1976) The superconducting split ring resonator as an accelerating structure, Nuclear Instruments and Methods, vol. 138, No.2, pp. 24–26.
Hardy W. N. et al. (1981) Split-ring resonator for use in magnetic resonance from 200–2000 MHz. Rev Sci, Instrument, Vol. 52 (2), p.213.
Mehdizadeh M. et al, (1983) Loop gap resonator — a lumped microwave resonant structure, IEEE Trans. Microwave Theory and Tech. Vol. MIT-31, pp. 1059–1063.
Atia A. E., Williams A. E. and R. W. Newcomb (1974) Narrow-band multiple-coupled cavity synthesis, IEEE Trans. on Circuits and Systems, pp. 649–655.
Ansoft HFSS software package, Pittsburgh, PA, USA.
Agilent HFSS Software package, Agilent Technologies, Palo-Alto, CA, USA.
Zaki K. A. and Chen C. (1990) A novel coupling method for dual mode waveguide or dielectric resonator filter IEEE Trans. Microwave Theory Tech. vol. MIT-38 pp. 1885–1893.
Shen Z. Y. (1994) High temperature superconducting microwave circuits, Artech House Inc. Norwood, MA 02062.
Nisenoff M. and Meyers W. J (2001) On-orbit status of the high temperature superconductivity experiment, IEEE Applied Supereonductivity Transactions. Vol 11. pp. 799–805.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Mansour, R.R. (2001). Three-Dimensional Cryogenic Filters. In: Weinstock, H., Nisenoff, M. (eds) Microwave Superconductivity. NATO Science Series, vol 375. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0450-3_7
Download citation
DOI: https://doi.org/10.1007/978-94-010-0450-3_7
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-0446-9
Online ISBN: 978-94-010-0450-3
eBook Packages: Springer Book Archive