Skip to main content

Near-Field Microwave Microscopy of Materials Properties

  • Chapter
Microwave Superconductivity

Part of the book series: NATO Science Series ((NSSE,volume 375))

Abstract

Near-field microwave microscopy has created the opportunity for a new class of electrodynamics experiments of materials. Freed from the constraints of traditional microwave optics, experiments can be carried out at high spatial resolution over a broad frequency range. In addition, the measurements can be done quantitatively so that images of microwave materials properties can be created. We review the five major types of near-field microwave microscopes and discuss our own form of microscopy in detail. Quantitative images of microwave sheet resistance, dielectric constant, and dielectric tunability are presented and discussed. Future prospects for near-field measurements of microwave electrodynamic properties are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. B. Pippard, “The surface impedance of superconductors and normal metals at high frequencies: I. Resistance of superconducting tin and mercury at 1200 Mcyc./sec,” Proc. Roy. Soc. A 191, 370–384 (1947).

    Article  Google Scholar 

  2. J. C. Slater, “Microwave Electronics,” Rev. Mod. Phys. 18, 441–521 (1946); L. C. Maier, Jr. and J. C. Slater, “Field Strength Measurements in Resonant Cavities,” J. Appl. Phys. 23, 68–83 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Klein, S. Donovan, M. Dressel, and G. Grüner, “Microwave Cavity Perturbation Technique: Part I: Principles,” Int. J. Infrared and Millimeter Waves 14, 2423–2457 (1993); S. Donovan, O. Klein, M. Dressel, K. Holczer, and G. Grüner, “Microwave Cavity Perturbation Technique: Part II: Experimental Scheme,” Int. J. Infrared and Millimeter Waves 14, 2459–2487 (1993); M. Dressel, O. Klein, S. Donovan, and G. Grüner, “Microwave Cavity Perturbation Technique: Part III: Applications,” Int. J. Infrared and Millimeter Waves 14, 2489–2517 (1993).

    Google Scholar 

  4. H. Ning, H. Duan, P. D. Kirven, A. M. Hermann, and T. Datta, “Magnetic Penetration Depth in High-Tc Superconducting Tl2Ca1Ba2Cu2O8−δ Single Crystals,” J. Super. 5, 503–509 (1992).

    Article  Google Scholar 

  5. C. E. Gough, and N. J. Exon, “Microwave response of anisotropic high-temperature-superconductor crystals,” Phys. Rev. B 50, 488–495 (1994).

    Article  Google Scholar 

  6. R. C. Taber, “A parallel plate resonator technique for microwave loss measurements on superconductors,” Rev. Sci. Instrum. 61, 2200–2206 (1990).

    Article  Google Scholar 

  7. V. V. Talanov, L. V. Mercaldo, S. M. Anlage and J. H. Claassen, “Measurement of the absolute penetration depth and surface resistance of superconductors and normal metals with the variable spacing parallel plate resonator,” to be published in Rev. Sci. Instrum. (2000).

    Google Scholar 

  8. John Gallop, L. Hao, F. Abbas, “Spatially Resolved Measurements of HTS Microwave Surface Impedance,” Physica C 282–287, 1579–1580 (1997); L. Hao, J. C. Gallop, “Spatially Resolved Measurements of HTS Microwave Surface Impedance,” IEEE Trans. Appl. Supercond. 9, 1944–1947 (1999).

    Article  Google Scholar 

  9. C. Wilker, Z-Y. Shen, V. X. Nguyen, and M. S. Brenner, “A sapphire resonator for microwave characterization of superconducting thin films,” IEEE Trans. Appl. Supercond. 3, 1457–1460 (1993).

    Article  Google Scholar 

  10. Steve Hogan, Sigurd Wagner, and Frank S. Barnes, “Resistivity measurement of thin semiconductor films on metallic substrates,” Appl. Phys. Lett. 35, 77–79 (1979).

    Article  Google Scholar 

  11. J. S. Martens, V. M. Hietala, D. S. Ginley, T. E. Zipperian, and G. K. G. Hohenwarter, “Confocal resonators for measuring the surface resistance of high-temperature superconducting films,” Appl. Phys. Lett. 58, 2543–2545 (1991).

    Article  Google Scholar 

  12. E. Keskin, K. Numssen, and J. Halbritter, “Defects in YBCO relevant for rf superconductivity: T-, f-and H-dependencies,” IEEE Trans. Appl. Supercon. 9, 2452 (1999).

    Article  Google Scholar 

  13. E. F. Skelton, A. R. Drews, M. S. Osofsky, S. B. Qadri, J. Z. Hu, T. A. Vanderah, J. L. Peng, and R. L. Greene, “Direct observation of Microscopic inhomogeneities with energy-dispersive diffraction of synchrotron-produced x-rays,” Science 263, 1416–1418 (1994).

    Article  Google Scholar 

  14. A. F. Hebard, A. T. Fiory, M. P. Siegal, J. M. Phillips, and R. C. Haddon, “Vortex-pair nucleation at defects: A mechanism for anoalous temperature dependence in the superconducting screening length,” Phys. Rev. B 44, 9753–9756 (1991).

    Article  Google Scholar 

  15. G. Hampel, B. Batlogg, K. Krishana, N. P. Ong, W. Prusseit, H. Kinder, A. C. Anderson, “Third-order nonlinear microwave response of YBa2Cu3O7−δ thin films and single crystals,” Appl. Phys. Lett. 71, 3904–3906 (1997).

    Article  Google Scholar 

  16. C. P. Bidinosti, W. N. Hardy, D. A. Bonn, and R. Liang, “Measurements of the Magnetic Field Dependence of 1 in YBa2Cu3O6.95 Results as a Function of Temperature and Field Orientation,” Phys. Rev. Lett. 83, 3277–3280 (1999).

    Article  Google Scholar 

  17. A. Carrington, R. W. Giannetta, J. T. Kim, and J. Giapintzakis, “Absence of non-linear Meissner effect in YBa2Cu3O6.95,” Phys. Rev. B 59, R14173–14176 (1999).

    Article  Google Scholar 

  18. E. A. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Phil. Mag. C 6, 356–362 (1928).

    Google Scholar 

  19. Zdenek Frait, “The use of high frequency modulation in studying ferromagnetic resonance,” Czeck. J. Phys. 9, 403–404 (1959); Z. Frait, V. Kambersky, Z. Malek, and M. Ondris, “Local variations of uniaxial anisotropy in thin films,” Czeck. J. Phys. B10, 616–617 (1960).

    Article  Google Scholar 

  20. R. F. Soohoo, “A Microwave Magnetic Microscope,” J. Appl. Phys. 33, 1276–1277 (1962).

    Article  Google Scholar 

  21. S. E. Lofland, S. M. Bhagat, H. L. Ju, G. C. Xiong, T. Venkatesan, and R. L. Greene, “Ferromagnetic resonance and magnetic homogeneity in a giant-magnetoresistance material La2/3Ba1/3MnO3,” Phys. Rev. B 52, 15058–15061 (1995).

    Article  Google Scholar 

  22. M. Ikeya and T. Miki, “ESR Microscopic Imaging with Microfabricated Field Gradient Coils,” Jap. J. Appl. Phys. 26, L929–L931 (1987); M. Ikeya, M. Furusawa, and M. Kasuyai, “Near-field scanning electron spin resonance microscopy,” Scanning Microscopy 4, 245–248 (1990).

    Article  Google Scholar 

  23. E. A. Ash and G. Nicholls, “Super-resolution Aperture Scanning Microscope,” Nature 237, 510–512 (1972).

    Article  Google Scholar 

  24. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).

    Article  Google Scholar 

  25. E. Betzig, M. Isaacson and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).

    Article  Google Scholar 

  26. C. A. Bryant and J. B. Gunn, “Noncontact Technique of the Local Measurement of Semiconductor Resistivity,” Rev. Sci. Instrum. 36, 1614–1617 (1965).

    Article  Google Scholar 

  27. Y. S. Xu and R. G. Bosisio, “Nondestructive Measurements of the Resistivity of Thin Conductive Films and the Dielectric Constant of Thin Substrates Using an Open-Ended Coaxila Line,” IEE Proc. H 139, 500–506 (1992).

    Google Scholar 

  28. M. A. Stuchly and S. S. Stuchly, “Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies — A Review,” IEEE Trans. Instrum. and Meas. IM-29, 176–183 (1980); M. A. Stuchly, M. M. Brady, S. S. Stuchly and G. Gajda, “Equivalent Circuit of an Open-Ended Coaxial Line in a Lossy Dielectric,” IEEE Trans. Instrum. and Meas. IM-31, 116–119 (1982); T. W. Athey, M. A. Stuchly and S. S. Stuchly, “Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part I,” IEEE Trans. Microwave Theory and Tech. MTT-30, 82–86 (1982); M. A. Stuchly, T. W. Athey, G. M. Samaras and G. E. Taylor, “Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part II — Experimental Results,” IEEE Trans. Microwave Theory and Tech. MTT-30, 87–92 (1982); G. B. Gajda and S. S. Stuchly, “Numerical Analysis of Open-Ended Coaxial Lines,” IEEE Trans. Microwave Theory and Tech. MTT-31, 380–384 (1983).

    Article  Google Scholar 

  29. E. C. Burdette, F. L. Cain, and J. Seals, “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies,” IEEE Trans. Microwave Theory Tech. MTT-28, 414–427 (1980).

    Article  Google Scholar 

  30. M. Fee, S. Chu and T. W. Hänsch, “Scanning electromagnetic transmission line microscope with sub-wavelength resolution,” Optics Communications 69, 219–224 (1989).

    Article  Google Scholar 

  31. S. J. Stranick and P. S. Weiss, “A versatile microwave-frequency-compatible scanning tunneling microscope,” Rev. Sci. Instrum. 64, 1232–1234 (1993); S. J. Stranick and P. S. Weiss, “A tunable microwave frequency alternating current scanning tunneling microscope,” Rev. Sci. Instrum. 65, 918–921 (1994); L. A. Bumm and P. S. Weiss, “Small cavity nonresonant tunable microwave-frequency alternating current scanning tunneling microscope,” Rev. Sci. Instrum. 66, 4140–4145 (1995).

    Article  Google Scholar 

  32. G. Q. Jiang, W. H. Wong, E. Y. Raskovich, W. G. Clark, W. A. Hines, J. Sanny, “Open-ended coaxial-line technique for the measurement of the microwave dielectric constant for low-loss solids and liquids,” Rev. Sci. Instrum. 64, 1614–1621 (1993).

    Article  Google Scholar 

  33. K. Asami, “The scanning dielectric microscope,” Meas. Sci. Technol. 5, 589–592 (1994).

    Article  Google Scholar 

  34. R. J. Gutman and J. M. Borrego, “Microwave scanning microscopy for planar structure diagnostics,” IEEE MTT Digest, 281–284 (1987); Bhimnathwala and J. M. Borrego, “Measurement of the sheet resistance of doped layers in semiconductors by microwave reflection,” J. Vac. Sci. Technol. B 12, 395–398 (1994).

    Google Scholar 

  35. N. Qaddoumi and R. Zoughi, “Preliminary study of the influences of effective dielectric constant and nonimiform probe apeture field distribution on near field microwave images,” Materials Evaluation, Oct., 1169–1173 (1997).

    Google Scholar 

  36. M. Golosovsky and D. Davidov, “Novel millimeter-wave near-field resistivity microscope,” Appl. Phys. Lett. 68, 1579–1581 (1996); M. Golosovsky, A. Galkin, and D. Davidov, “High-Spatial Resolution Resistivity Mapping of Large-Area YBCO Films by a Near-Field Millimeter-Wave Microscope,” IEEE MTT 44, 1390–1392 (1996); M. Golosovsky, A. Lann, and D. Davidov, “A millimeter-wave near-field scanning probe with an optical distance control,” Ultramicroscopy 71, 133–141 (1998); A. F. Lann, M. Golosovsky, D. Davidov, and A. Frenkel, “Combined millimeter-wave near-field microscope and capacitance distance control for the quantitative mapping of sheet resistance of conducting layers,” Appl. Phys. Lett. 73, 2832–2834 (1998); A. F. Lann, M. Golosovsky, D. Davidov, and A. Frenkel, “Microwave near-field polarimetry,” Appl. Phys. Lett. 75, 603–605 (1999).

    Article  Google Scholar 

  37. J. Bae, T. Okamoto, T. Fujii, K. Mizuno, T. Nozokido, “Experimental demonstration for scanning near-field optical microscopy using a metal micro-slit probe at millimeter wavelengths,” Appl. Phys. Lett. 71, 3581–3583 (1997).

    Article  Google Scholar 

  38. M. Tabib-Azar, N. Shoemaker and S. Harris, “Non-destructive characterization of materials by evanescent microwaves,” Meas. Sci. Tech., 4, 583–590 (1993); M. Tabib-Azar, D.-P. Su, A. Pohar, S. R. LeClair, and G. Ponchak, “0.4 μm spatial resolution with 1 GHz (λ=30 cm) evanescent microwave probe,” Rev. Sci. Instrum., 70, 1725–1729 (1999); M. Tabib-Azar, P. S. Pathak, G. Ponchak, and S. LeClair, “Non-destructive superresolution imaging of defects and nonuniformities in metals, semiconductors, dielectrics, composites, and plants using evanescent microwaves,” Rev. Sci. Instrum., 70, 2783–2792 (1999); M. Tabib-Azar, R. Ciocan, G. Ponchak, and S. R. LeClair, “Transient thermography using evanescent microwave microscope,” Rev. Sci. Instrum., 70, 3387–3390 (1999); G. Ponchak, D. Akinwande, R. Ciocan, S. R. LeClair and M. Tabib-Azar, “Evanescent Microwave Probes Using Coplanar Waveguide and Stripline for Super-Resolution Imaging of Materials,” IEEE MTT-S Digest, (1999).

    Article  Google Scholar 

  39. F. Keilmann, US Patent 4,994,818, filed Oct. 27, 1989; R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium Edge-State Transport Resolved by Far-Infrared Microscopy,” Phys. Rev. Lett. 70, 651–653 (1993); F. Keilmann, “FIR Microscopy,” Infrared Phys. Technol. 36, 217–224 (1995); F. Keilmann, D. W. van der Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavlength resolution with a scanning radio-frequency transmission microscope,” Optics Commun. 129, 15–18 (1996); B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).

    Google Scholar 

  40. R. G. Bosisio, M. Giroux, and D. Couderc, “Paper Sheet Moisture Measurements by Microwave Phase Perturbation Techniques,” J. Microwave Power 5, 25–34 (1970).

    Google Scholar 

  41. E. Tanabe and W. T. Joines, “A Nondestructive Method for Measuring the Complex Permittivity of Dielectric Materials at Microwave Frequencies Using an Open Transmission Line Resonator,” IEEE Trans. Instrum. and Meas. IM-25, 222–226 (1976).

    Article  Google Scholar 

  42. Y. Cho, A. Kirihara and T. Saeki, “Scanning nonlinear dielectric microscope,” Rev. Sci. Instrum. 67, 2297–2303 (1996); Y. Cho, S. Kazuta, and K. Matsuura, “Scanning nonlinear dielectric microscopy with nanometer resolution,” Appl. Phys. Lett. 75, 2833–2835 (1999).

    Article  Google Scholar 

  43. T. Wei, X.-D. Xiang, W. G. Wallaee-Preedman and P. G. Schultz, “Scanning tip microwave near-field microscope,” Appl. Phys. Lett. 68, 3506–3508 (1996); Y. Lu, T. Wei, F. Duewer, Y. Lu, N. Ming, P. G. Schultz and X.-D. Xiang, “Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-Tip Microwave Near-Field Microscope,” Science 276, 2004–2006 (1997); C. Gao, T. Wei, F. Duewer, Y. Lu and X.-D. Xiang, “High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope,” Appl. Phys. Lett. 71, 1872–1874 (1997); I. Takeuehi, T. Wei, F. Duewer, Y. K. Yoo, X.-D. Xiang, V. Talyansky, S. P. Pai, G. J. Chen, and T. Venkatesan, “Low temperature scanning-tip microwave near-field microscopy of YBCO films,” Appl. Phys. Lett. 71, 2026–2028 (1997); H. Chang, C. Gao, I. Takeuehi, Y. Yoo, J. Wang, P. G. Schultz, X.-D. Xiang, R. P. Sharma, M. Downes, and T. Venkatesan, “Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film Hbraries for microwave applications,” Appl. Phys. Lett. 72, 2185–2187 (1998); C. Gao, and X.-D. Xiang, “Quantitative microwave near-field microscopy of dielectric properties,” Rev. Sci. Instrum. 69, 3846–3851 (1998).

    Article  Google Scholar 

  44. C. P. Vlahacos, R. C. Black, S. M. Anlage and F. C. Wellstood, “Near-field Scanning Microwave Microscope with 100 μm Resolution,” Appl. Phys. Lett. 69, 3272–3274 (1996).

    Article  Google Scholar 

  45. Steven M. Anlage, C. P. Vlahacos, Sudeep Dutta, and F. C. Wellstood, “Scanning Microwave Microscopy of Active Superconducting Microwave Devices,” IEEE Trans. Appl. Supercond. 7, 3686–3689 (1997).

    Article  Google Scholar 

  46. D. E. Steinhauer, C. P. Vlahacos, Sudeep Dutta, F. C. Wellstood, and Steven M. Anlage, “Surface Resistance Imaging with a Scanning Near-Field Microwave Microscope,” Appl. Phys. Lett. 71, 1736–1738 (1997). cond-mat/9712142.

    Article  Google Scholar 

  47. D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, B. J. Feenstra, F. C. Wellstood, and Steven M. Anlage, “Quantitative Imaging of Sheet Resistance with a Scanning Near-Field Microwave Microscope,” Appl. Phys. Lett. 72, 861–863 (1998). cond-mat/9712171.

    Article  Google Scholar 

  48. D. E. Steinhauer, C. P. Vlahacos, C. Canedy, A. Stanishevski, J. Melngailis, R. Ramesh, F. C. Wellstood, and S. M. Anlage, “Imaging of Microwave Permittivity, Tunability, and Damage Recovery in (Ba,Sr)TiO3 Thin Films,” Appl. Phys. Lett. 75, 3180–3182 (1999).

    Article  Google Scholar 

  49. B. J. Feenstra, C. P. Vlahacos, Ashfaq S. Thanawalla, D. E. Steinhauer, S. K. Dutta, F. C. Wellstood and Steven M. Anlage, “Near-Field Scanning Microwave Microscopy: Measuring Local Microwave Properties and Electric Field Distributions,” IEEE MTT-S Int. Microwave Symp. Digest, p. 965–966 (1998). cond-mat/9802293.

    Google Scholar 

  50. Steven M. Anlage, C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, A. Thanawalla, and F. C. Wellstood, “Low Power Superconducting Microwave Applications and Microwave Microscopy,” Particle Accelerators 61, [321–336]/57–72 (1998). cond-mat/9808195

    Google Scholar 

  51. Steven M. Anlage, D. E. Steinhauer, C. P. Vlahacos, B. J. Feenstra, A. S. Thanawalla, Wensheng Hu, Sudeep K. Dutta, and F. C. Wellstood, “Superconducting Material Diagnostics using a Scanning Near-Field Microwave Microscope,” IEEE Trans. Appl. Supercond. 9, 4127–4132 (1999). cond-mat/9811158.

    Article  Google Scholar 

  52. Steven M. Anlage, Wensheng Hu, C. P. Vlahacos, David Steinhauer, B. J. Feenstra, Sudeep K. Dutta, Ashfaq Thanawalla, and F. C. Wellstood, “Microwave Nonlinearities in High-Tc Superconductors: The Truth Is Out There,” J. Supercond. 12, 353–362 (1999). cond-mat/9808194.

    Article  Google Scholar 

  53. C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, Steven M. Anlage, and F. C. Wellstood, “Non-Contact Imaging of Dielectric Constant with a Near-Field Scanning Microwave Microscope,” The Americas Microscopy and Analysis, January, 5–7, (2000).

    Google Scholar 

  54. Steven M. Anlage, A. S. Thanawalla, A. P. Zhuravel’, W. Hu, C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, and F. C. Wellstood, “Near-Field Scanning Microwave Microscopy of Superconducting Materials and Devices,” in Advances in Superconductivity XI, ed. by N. Koshizuka and S. Tajima, (Springer-Verlag, Tokyo, 1999), pp. 1079–1084.

    Google Scholar 

  55. C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, Steven M. Anlage, and F. C. Wellstood, “Quantitative Topographic Imaging Using a Near-Field Scanning Microwave Microscope,” Appl. Phys. Lett., 72, 1778–1780 (1998). cond-mat/9802139.

    Article  Google Scholar 

  56. M. J. Werner and R. J. King, “Mapping the ε″ of conducting solid films in situ” MRS Proc. (1996); U.S. Patent #5,334,941, “Microwave reflection resonator sensors,” issued August 2, 1994 to R. J. King.

    Google Scholar 

  57. Y. Manassen, “Scanning Probe Microscopy and Magnetic Resonance,” Adv. Mater. 6, 401–404 (1994).

    Article  Google Scholar 

  58. Z. Zhang, P. C. Hammel and P. Wigen, “Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy,” Appl. Phys. Lett. 68, 2005–2007 (1996); Z. Zhang, P. C. Hammel, M. Midzor, M. L. Roukes, and J. R. Childress, “Ferromagnetic resonance force microscopy on microscopic cobalt single layer films,” Appl. Phys. Lett. 73, 2036–2038 (1998).

    Article  Google Scholar 

  59. K. Wago, D. Botkin, C. S. Yannoni, and D. Rugar, “Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic resonance force microscope,” Appl. Phys. Lett. 72, 2757–2759 (1998).

    Article  Google Scholar 

  60. B. Knoll, and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).

    Article  Google Scholar 

  61. R. C. Black, F. C. Wellstood, E. Dantsker, A. H. Miklich, D. T. Nemeth, D. Koelle, F. Ludwig, and J. Clarke, “Microwave microscopy using a superconducting quantum interference device,” Appl. Phys. Lett. 66, 99–101 (1995); R. C. Black, F. C. Wellstood, E. Dantsker, A. H. Miklich, D. Koelle, F. Ludwig, and J. Clarke, “High-frequency magnetic microscopy using a high-Tc SQUID,” IEEE Trans. Appl. Supercon. 5, 2137–2141 (1995).

    Article  Google Scholar 

  62. J. E. Aitken, “Swept Frequency Microwave Q-Factor Measurement,” Proc. IEE 123, 855–862 (1976).

    Google Scholar 

  63. K. Zaki and G. J. Chen, private communication.

    Google Scholar 

  64. D. E. Steinhauer, C. P. Vlahacos, C. Canedy, A. Stanishevski, J. Melngailis, R. Ramesh, F. C. Wellstood, and S. M. Anlage, “Quantitative Imaging of Permittivity and Tunability with a Near-Field Scanning Microwave Microscope,” submitted to Rev. Sci. Instrum. (1999).

    Google Scholar 

  65. S. Ramo, J. R. Whinnery and T. van Duzer, Fields and Waves in Communication Electronics, second edition, (Wiley, New York, 1984), p. 445.

    Google Scholar 

  66. Ichiro Takeuchi, personal communication.

    Google Scholar 

  67. J. C. Booth, Ph.D. Thesis, “Novel Measurements of the Frequency Dependent Microwave Surface Impedance of Cuprate Thin Film Superconductors,” University of Maryland, 1996.

    Google Scholar 

  68. G. L. James, “Analysis and Design of TE11-to-HE11 Corrugated Cylindrical Waveguide Mode Converters,” IEEE Trans. Microwave Theory Tech. 29, 1059–1066 (1981).

    Article  Google Scholar 

  69. D. Gershon, J. P. Calame, Y. Carmel, T. M. Antonsen Jr., and R. M. Hutchen, “Open-ended coaxial probe for high-temperature and broad-band dielectric measurements,” IEEE Trans. Microwave Theory Tech. 47, 1640–1648 (1999).

    Article  Google Scholar 

  70. B. J. Feenstra, Ashfaq S. Thanawalla, Wensheng Hu, D. E. Steinhauer, Steven M. Anlage, F. C. Wellstood, “Local measurements of normal and superconducting state properties of high Tc superconductors at microwave frequencies,” Bull. Am. Phys. Soc. 44, 1479 (1999).

    Google Scholar 

  71. A. F. Lann, M. Abu-Teir, M. Golosovsky, D. Davidov, A. Goldgirsch, and V. Berlin, “Magnetic-field-modulated microwave reflectivity of high-Tc superconductors studied by near-field mm-wave microscopy,” Appl. Phys. Lett. 75, 1766–1768 (1999).

    Article  Google Scholar 

  72. A. F. Lann, M. Abu-Teir, M. Golosovsky, D. Davidov, S. Djordjevic, N. Bontemps, and L. F. Cohen, “A cryogenic microwave scanning near-field probe: Application to study of high-Tc superconductors,” Rev. Sci. Instrum. 70, 4348–4355 (1999).

    Article  Google Scholar 

  73. Wensheng Hu, B. J. Feenstra, A. S. Thanawalla, F. C. Wellstood, and Steven M. Anlage, “Imaging of Microwave Intermodulation Fields in a Superconducting Microstrip Resonator,” Appl. Phys. Lett. 75, 2824–2826 (1999).

    Article  Google Scholar 

  74. Ashfaq S. Thanawalla, S. K. Dutta, C. P. Vlahacos, D. E. Steinhauer, B. J. Feenstra, Steven M. Anlage, and F. C. Wellstood, “Microwave Near-Field Imaging of Electric Fields in a Superconducting Microstrip Resonator,” Appl. Phys. Lett. 73, 2491–2493 (1998). cond-mat/9805239.

    Article  Google Scholar 

  75. S. K. Dutta, C. P. Vlahacos, D. E. Steinhauer, Ashfaq S. Thanawalla, B. J. Feenstra, F. C. Wellstood, Steven M. Anlage, and Harvey S. Newman, “Imaging Microwave Electric Fields Using a Near-Field Scanning Microwave Microscope,” Appl. Phys. Lett. 74, 156–158 (1999). cond-mat/9811140.

    Article  Google Scholar 

  76. Ashfaq S. Thanawalla, W. Hu, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, Steven M. Anlage, F. C. Wellstood, and Robert B. Hammond, “Frequency Following Imaging of the Electric Field around Resonant Superconducting Devices using a Near-Field Scanning Microwave Microscope,” IEEE Trans. Appl. Supercond. 9, 3042–3045 (1999). cond-mat/9811141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anlage, S.M., Steinhauer, D.E., Feenstra, B.J., Vlahacos, C.P., Wellstood, F.C. (2001). Near-Field Microwave Microscopy of Materials Properties. In: Weinstock, H., Nisenoff, M. (eds) Microwave Superconductivity. NATO Science Series, vol 375. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0450-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0450-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0446-9

  • Online ISBN: 978-94-010-0450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics