Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 47))

Abstract

An octahedral, vortical (divergence-free) flow is defined, and reasons are given for why it is a candidate for self-similar, point-collapse and blowup under evolution of the Euler equations. Results from a vortex filament model of such flows are then reviewed and the data subsequently analyzed. The Gauss map, a mapping of the vorticity tangent field, is examined. A Leray-Beltrami flow, defined as a force-free flow in the Leray collapse frame, is shown to develop in the inner region. Finally, the vorticity is found to scale as the inverse square of the distance from the origin, the center of the point collapse. A discussion follows on the ramification of these findings to possible blowup in the Navier-Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boratav, O.N. & Pelz, R.B. (1994) Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids 6, 2757–2784.

    Article  ADS  MATH  Google Scholar 

  2. Caffarelli, L., Kohn, R.V. & Nirenberg, L. (1982) Partial regularity of suitable weak solution of the Navier-Stokes equations. Comm. Pure Appl. Math 35, 771–831.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Constantin, P. (2000) The Euler equations and nonlocal conservative Riccati equations. Int. Math. Res. Notices 9, 455–465.

    Article  MathSciNet  Google Scholar 

  4. Constantin, P, Lax, P.D. & Majda, A. (1996) A simple one-dimensional model of the three-dimensional vorticity equation. Comm. Pure Appl. Math 38, 715–724.

    Article  MathSciNet  ADS  Google Scholar 

  5. Constantin, P., Majda, A., & Tabac, E. (1994) Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7, 1495–1533.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Cordoba, D. (1998) Non-existence of simple hyperbolic blow-up for the quasigeostrophic equation. Annals of Mathematics 148, 1135–1152.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fefferman, C. (2000) Existence and smoothness of the Navier-Stokes equations. www.claymath.org/prizeproblems/navierstokes.htm.

  8. Grauer, R., Marliani, C. & Germaschewski, K. (1998) Adaptive mesh refinement for singular solutions of the incompressible Euler equations. Phys. Rev. Letts. 80(19), 4177–4180.

    Article  ADS  Google Scholar 

  9. Greene, J.M. & Pelz, R.B. (2000) Stability of postulated, self-similar, hydrodynamic blowup solutions. Phys. Rev. E 62, 7982.

    Article  MathSciNet  ADS  Google Scholar 

  10. Kerr, R.M. (1993) Evidence for a singularity in the three-dimensional Euler equations. Phys. Fluids 6, 1725–1746.

    MathSciNet  ADS  Google Scholar 

  11. Kettle, S.F.A. (1985) Symmetry and Structure. Wiley.

    Google Scholar 

  12. Leray, J. (1934) Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 193–248.

    Article  MathSciNet  MATH  Google Scholar 

  13. Malham, S.J.A. (2000) Collapse of a class of three-dimensional Euler vortices. Proc. R. Soc. Lond. A 456, 2823–2833.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Moffatt, H.K. (2000) The interaction of skewed vortex pairs: a model for blow-up of the Navier-Stokes equations. J. Fluid Mech. 409, 51–68.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Nečas, J., Ru̇žička, M. & Šverák, V. (1996) On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176, 283–294.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohkitani K. & Gibbon, J.D. (2000) Numerical study of singularity formation in a class of Euler and Navier-Stokes flows. Phys. Fluids 12, 3181–3194.

    Article  MathSciNet  ADS  Google Scholar 

  17. Pelz, R.B. (1997) Locally self-similar, finite-time collapse in a high-symmetry vortex filament model. Phys. Rev. E 55, 1617–1626.

    Article  ADS  Google Scholar 

  18. Pelz, R.B. (2001) Symmetry and the hydrodynamic blowup problem. J. Fluid Mech., in press.

    Google Scholar 

  19. Pelz, R.B. & Gulak, Y. (1997) Evidence for a real-time singularity in hydrodynamics from time series analysis. Phys. Rev. Lett. 79(25), 4998–5001.

    Article  ADS  Google Scholar 

  20. Plechac, P & Šverák, V. (2001) On self-similar singular solutions of the complex Ginzburg-Landau equation. Comm. Pure Appl. Math., in press.

    Google Scholar 

  21. Scheffer, V. (1977) Hausdorff measure and the Navier-Stokes equations. Comm. Math. Phys. 55, 97–112.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Tsai, T.-P. (1998) On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch. Rat. Mech. Anal. 143, 29–51.

    Article  MATH  Google Scholar 

  23. Wherrett, B.S. (1986) Group Theory for Atoms, Molecules and Solids. Prentice Hall International.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pelz, R.B. (2001). Analysis of a Candidate Flow For Hydrodynamic Blowup. In: Ricca, R.L. (eds) An Introduction to the Geometry and Topology of Fluid Flows. NATO Science Series, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0446-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0446-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0207-6

  • Online ISBN: 978-94-010-0446-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics